BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 7014213)

  • 21. Localization and synthesis of monoamines in regions of Limax CNS controlling feeding behavior.
    Wieland SJ; Jahn E; Gelperin A
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1987; 86(1):125-30. PubMed ID: 2881707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypothalamic catecholamine biosynthesis in vitro as measured by liquid chromatography and electrochemical detection.
    Sundberg DK; Bennett B; Wendel OT; Morris M
    Res Commun Chem Pathol Pharmacol; 1980 Sep; 29(3):599-602. PubMed ID: 7423028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Meal ingestion, amino acids and brain neurotransmitters: effects of dietary protein source on serotonin and catecholamine synthesis rates.
    Choi S; Disilvio B; Fernstrom MH; Fernstrom JD
    Physiol Behav; 2009 Aug; 98(1-2):156-62. PubMed ID: 19454292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential effect of immobilization stress on in vivo synthesis rate of monoamines in medial prefrontal cortex and nucleus accumbens of conscious rats.
    Nakahara D; Nakamura M
    Synapse; 1999 Jun; 32(3):238-42. PubMed ID: 10340633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the dopamine synthetic pathway in the arcuate nucleus of fetal rats.
    Ugrumov MV; Melnikova VI; Lavrentyeva AV; Kudrin VS; Rayevsky KS
    Neuroscience; 2004; 124(3):629-35. PubMed ID: 14980733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of heavy metals on monoamine uptake and release in brain synaptosomes and blood platelets.
    Komulainen H; Tuomisto J
    Neurobehav Toxicol Teratol; 1982; 4(6):647-9. PubMed ID: 7170022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nutrients affecting brain composition and behavior.
    Wurtman RJ
    Integr Psychiatry; 1987 Dec; 5(4):226-38; discussion 238-57. PubMed ID: 11540104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sodium dependence of high affinity glutamic acid transport in cortical synaptosomes--a comparison of Long-Evans and Sprague-Dawley rats.
    Wheeler DD
    J Neurosci Res; 1981; 6(2):149-64. PubMed ID: 7241617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tryptophan transport in brain synaptosomes: effects of L-DOPA.
    Diez JA; Ward WG; Summer GK
    Brain Res; 1976 Dec; 117(3):534-9. PubMed ID: 990944
    [No Abstract]   [Full Text] [Related]  

  • 30. Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1).
    Dowd LA; Coyle AJ; Rothstein JD; Pritchett DB; Robinson MB
    Mol Pharmacol; 1996 Mar; 49(3):465-73. PubMed ID: 8643086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proceedings: A critical assessment of methods for the determination of monoamine synthesis and turnover rates in vivo.
    Weiner N
    Psychopharmacol Bull; 1974 Jul; 10(3):28-9. PubMed ID: 4419298
    [No Abstract]   [Full Text] [Related]  

  • 32. Synthesis and evaluation of the antidepressant activity of the enantiomers of bupropion.
    Musso DL; Mehta NB; Soroko FE; Ferris RM; Hollingsworth EB; Kenney BT
    Chirality; 1993; 5(7):495-500. PubMed ID: 8240925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enantioselective transport and liquid-liquid extraction of amino acids as their potassium and sodium salts by optically active diaza-18-crown-6 ethers.
    Demirel N; Bulut Y; Hoşgören H
    Chirality; 2004 Jul; 16(6):347-50. PubMed ID: 15190578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of wild-type carrier-mediated L-carnitine transport activity in hepatocytes of juvenile visceral steatosis mice.
    Yokogawa K; Yonekawa M; Tamai I; Ohashi R; Tatsumi Y; Higashi Y; Nomura M; Hashimoto N; Nikaido H; Hayakawa J; Nezu J; Oku A; Shimane M; Miyamoto K; Tsuji A
    Hepatology; 1999 Oct; 30(4):997-1001. PubMed ID: 10498652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tryptophan and tyrosine catabolic pattern in neuropsychiatric disorders.
    Ravikumar A; Deepadevi KV; Arun P; Manojkumar V; Kurup PA
    Neurol India; 2000 Sep; 48(3):231-8. PubMed ID: 11025626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does labeled alpha-methyl-L-tryptophan image ONLY blood-brain barrier transport of tryptophan?
    Diksic M
    J Cereb Blood Flow Metab; 2000 Oct; 20(10):1508-11. PubMed ID: 11043914
    [No Abstract]   [Full Text] [Related]  

  • 37. Intramolecular electron transfer between tryptophan radical and tyrosine in oligoproline-bridged model peptides and hen egg-white lysozyme.
    Wierzchowski KL
    Acta Biochim Pol; 1997; 44(4):627-44. PubMed ID: 9584844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The electron paramagnetic resonance spectrum of blastomogenic metabolites of tryptophan and tyrosine].
    Petiaev MM
    Vopr Onkol; 1972; 18(8):87. PubMed ID: 4348594
    [No Abstract]   [Full Text] [Related]  

  • 39. [A further contribution to the understanding of the chemical nature of vitelline globules in Aplysia depilans L. (Moll. Gast. Opis.)].
    Celi AD
    Acta Histochem; 1967; 26(2):205-9. PubMed ID: 4969338
    [No Abstract]   [Full Text] [Related]  

  • 40. [Chemical agents exerting specific adverse effects on neurons synthesizing biogenic amines].
    Herman ZS; Brus R
    Postepy Hig Med Dosw; 1978; 32(1):79-115. PubMed ID: 662788
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.