These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7014220)

  • 41. Methionyl-tRNA synthetase from Escherichia coli: substituting magnesium by manganese in the L-methionine activating reaction.
    Hyafil F; Blanquet S
    Eur J Biochem; 1977 Apr; 74(3):481-93. PubMed ID: 323013
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arginyl-tRNA synthetase from Escherichia coli K12: specificity with regard to ATP analogs and their magnesium complexes.
    Gerlo E; Freist W; Charlier J
    Hoppe Seylers Z Physiol Chem; 1982 Apr; 363(4):365-73. PubMed ID: 7042510
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Arginyl-tRNA synthetase from Escherichia coli K12. Purification, properties, and sequence of substrate addition.
    Charlier J; Gerlo E
    Biochemistry; 1979 Jul; 18(14):3171-8. PubMed ID: 37899
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase.
    Old JM; Jones DS
    Biochem J; 1977 Aug; 165(2):367-73. PubMed ID: 336037
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for unfolding of the single-stranded GCCA 3'-End of a tRNA on its aminoacyl-tRNA synthetase from a stacked helical to a foldback conformation.
    Madore E; Lipman RS; Hou YM; Lapointe J
    Biochemistry; 2000 Jun; 39(23):6791-8. PubMed ID: 10841758
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monomeric structure of glutamyl-tRNA synthetase in Escherichia coli.
    Powers DM; Ginsburg A
    Arch Biochem Biophys; 1978 Dec; 191(2):673-9. PubMed ID: 369459
    [No Abstract]   [Full Text] [Related]  

  • 47. [Modification of phenylalanyl-tRNA-synthetase from Escherichia coli MRE600 by adenosine-5'-trimetaphosphate].
    Khodyreva SN; Nevinskiĭ GA; Ankilova VN; Lavrik OI
    Mol Biol (Mosk); 1983; 17(6):1196-203. PubMed ID: 6361520
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic mechanism of threonyl-tRNA synthetase from human placenta.
    Pan F; Lo KY; Pai SH; Lee HH
    Int J Pept Protein Res; 1982 Aug; 20(2):159-66. PubMed ID: 7118437
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity.
    Rogers KC; Söll D
    Biochemistry; 1993 Dec; 32(51):14210-9. PubMed ID: 7505112
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Critical role of zinc ion on E. coli glutamyl-queuosine-tRNA(Asp) synthetase (Glu-Q-RS) structure and function.
    Ray S; Banerjee V; Blaise M; Banerjee B; Das KP; Kern D; Banerjee R
    Protein J; 2014 Apr; 33(2):143-9. PubMed ID: 24505021
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Influence of the structure of photoreactive ATP analogs on the affinity modification of phenylalanyl-tRNA synsthetase. Modification of the enzyme at two types of nucleotide sites].
    Lavrik OI; Nevinskiĭ GA; Riazankin IA
    Mol Biol (Mosk); 1979; 13(5):1001-11. PubMed ID: 388188
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aminoacylation of hypomodified tRNAGlu in vivo.
    Krüger MK; Sørensen MA
    J Mol Biol; 1998 Dec; 284(3):609-20. PubMed ID: 9826502
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Affinity labeling of aminoacyl-tRNA synthetases with adenosine triphosphopyridoxal: probing the Lys-Met-Ser-Lys-Ser signature sequence as the ATP-binding site in Escherichia coli methionyl-and valyl-tRNA synthetases.
    Hountondji C; Schmitter JM; Fukui T; Tagaya M; Blanquet S
    Biochemistry; 1990 Dec; 29(51):11266-73. PubMed ID: 2271710
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The zinc-binding site of a class I aminoacyl-tRNA synthetase is a SWIM domain that modulates amino acid binding via the tRNA acceptor arm.
    Banerjee R; Dubois DY; Gauthier J; Lin SX; Roy S; Lapointe J
    Eur J Biochem; 2004 Feb; 271(4):724-33. PubMed ID: 14764088
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo formation of glutamyl-tRNA(Gln) in Escherichia coli by heterologous glutamyl-tRNA synthetases.
    Núñez H; Lefimil C; Min B; Söll D; Orellana O
    FEBS Lett; 2004 Jan; 557(1-3):133-5. PubMed ID: 14741355
    [TBL] [Abstract][Full Text] [Related]  

  • 56. L-phenylalanine:tRNA ligase of Escherichia coli K10. A rapid kinetic investigation of the catalytic reaction.
    Bartmann P; Hanke T; Holler E
    Biochemistry; 1975 Nov; 14(22):4777-86. PubMed ID: 1101957
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The identity determinants required for the discrimination between tRNAGlu and tRNAAsp by glutamyl-tRNA synthetase from Escherichia coli.
    Sekine S; Nureki O; Tateno M; Yokoyama S
    Eur J Biochem; 1999 Apr; 261(2):354-60. PubMed ID: 10215844
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influences of amino acid, ATP, pyrophosphate and tRNA on binding of aminoalkyl adenylates to isoleucyl-tRNA synthetase from Escherichia coli MRE 600.
    Flossdorf J; Marutzky R; Kula MR
    Nucleic Acids Res; 1977 Jul; 4(7):2455-66. PubMed ID: 198742
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Switching the amino acid specificity of an aminoacyl-tRNA synthetase.
    Agou F; Quevillon S; Kerjan P; Mirande M
    Biochemistry; 1998 Aug; 37(32):11309-14. PubMed ID: 9698378
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A fluorescence spectroscopic study of substrate-induced conformational changes in glutaminyl-tRNA synthetase.
    Bhattacharyya T; Roy S
    Biochemistry; 1993 Sep; 32(36):9268-73. PubMed ID: 8369295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.