These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7014255)

  • 1. Probes of membrane potential in Escherichia coli cells.
    Ghazi A; Schechter E; Letellier L; Labedan B
    FEBS Lett; 1981 Mar; 125(2):197-200. PubMed ID: 7014255
    [No Abstract]   [Full Text] [Related]  

  • 2. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane potential and active transport in membrane vesicles from Escherichia coli.
    Schuldiner S; Kaback HR
    Biochemistry; 1975 Dec; 14(25):5451-61. PubMed ID: 172125
    [No Abstract]   [Full Text] [Related]  

  • 4. Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli.
    Ahmed S; Booth IR
    Biochem J; 1981 Dec; 200(3):573-81. PubMed ID: 6282253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phosphonium ion efflux system of Escherichia coli: relationship to the ethidium efflux system and energetic studies.
    Midgley M
    J Gen Microbiol; 1986 Nov; 132(11):3187-93. PubMed ID: 3305782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valinomycin can depolarize mitochondria in intact lymphocytes without increasing plasma membrane potassium fluxes.
    Felber SM; Brand MD
    FEBS Lett; 1982 Dec; 150(1):122-4. PubMed ID: 7160466
    [No Abstract]   [Full Text] [Related]  

  • 7. Distinction between changes in membrane potential and surface charge upon chemotactic stimulation of Escherichia coli.
    Eisenbach M; Margolin Y; Ciobotariu A; Rottenberg H
    Biophys J; 1984 Feb; 45(2):463-7. PubMed ID: 6365190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of membrane potential and calcium in chemotactic sensing by bacteria.
    Snyder MA; Stock JB; Koshland DE
    J Mol Biol; 1981 Jun; 149(2):241-57. PubMed ID: 6796698
    [No Abstract]   [Full Text] [Related]  

  • 9. Dissipation of membrane potential of Escherichia coli cells induced by macromolecular polylysine.
    Katsu T; Tsuchiya T; Fujita Y
    Biochem Biophys Res Commun; 1984 Jul; 122(1):401-6. PubMed ID: 6378203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Proton-potassium exchange in Escherichia coli].
    Durgar'ian SS; Martirosov SM
    Biofizika; 1980; 25(3):469-72. PubMed ID: 6994822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of lipophilic cation-permeable mutants for measurement of transmembrane electrical potential in metabolizing cells of Escherichia coli.
    Hirota N; Matsuura S; Mochizuki N; Mutoh N; Imae Y
    J Bacteriol; 1981 Nov; 148(2):399-405. PubMed ID: 6795176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical potential dependence of Na+-sugar cotransport determined using TPP+ influx.
    Restrepo D; Kimmich GA
    Ann N Y Acad Sci; 1985; 456():77-9. PubMed ID: 3867314
    [No Abstract]   [Full Text] [Related]  

  • 13. Membrane potential in liposomes measured by the transmembrane distribution of 86Rb+, tetraphenylphosphonium or triphenylmethylphosphonium: effect of cholesterol in the lipid bilayer.
    Nakazato K; Murakami N; Konishi T; Hatano Y
    Biochim Biophys Acta; 1988 Dec; 946(1):143-50. PubMed ID: 3207727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the membrane potential of isolated nerve terminals by the lipophilic cation [3H]triphenylmethylphosphonium bromide.
    Hansson E; Jacobson I; Venema R; Sellström A
    J Neurochem; 1980 Mar; 34(3):569-73. PubMed ID: 7354332
    [No Abstract]   [Full Text] [Related]  

  • 15. [The Na+--K+ ATPase contribution to the membrane potential in the human spermatozoon].
    Calzada L; Bernal A
    Ginecol Obstet Mex; 1988 Jul; 56():175-80. PubMed ID: 2856449
    [No Abstract]   [Full Text] [Related]  

  • 16. Use of triphenylmethylphosphonium to measure membrane potentials in red blood cells.
    Freedman JC; Novak TS
    Methods Enzymol; 1989; 173():94-100. PubMed ID: 2779444
    [No Abstract]   [Full Text] [Related]  

  • 17. Light changes the membrane potential and ion balances of retinal rod disks.
    Hughes SM; Brand MD
    FEBS Lett; 1985 Mar; 182(2):380-4. PubMed ID: 3979560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial cytoplasmic membrane permeability assay using ion-selective electrodes.
    Ohmizo C; Yata M; Katsu T
    J Microbiol Methods; 2004 Nov; 59(2):173-9. PubMed ID: 15369853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the plasma and mitochondrial membrane potentials of alveolar type II cells by the use of ionic probes.
    Gallo RL; Finkelstein JN; Notter RH
    Biochim Biophys Acta; 1984 Apr; 771(2):217-27. PubMed ID: 6704396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Changes in the membrane potential of the rabbit spermatozoon during epididymal maturation].
    Calzada L; Bernal A
    Ginecol Obstet Mex; 1988 Aug; 56():226-31. PubMed ID: 3154244
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.