These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7014568)

  • 1. Calorimetric estimate of the enthalpy change for the substrate-promoted conformational transition of aspartate transcarbamoylase from Escherichia coli.
    Shrake A; Ginsburg A; Schachman HK
    J Biol Chem; 1981 May; 256(10):5005-15. PubMed ID: 7014568
    [No Abstract]   [Full Text] [Related]  

  • 2. Revisiting the allosteric mechanism of aspartate transcarbamoylase.
    Fetler L; Vachette P
    Nat Struct Biol; 2002 Feb; 9(2):87-9. PubMed ID: 11813011
    [No Abstract]   [Full Text] [Related]  

  • 3. Calorimetric analysis of aspartate transcarbamylase from Escherichia coli. Binding of substrates and substrate analogues to the native enzyme and catalytic subunit.
    Knier BL; Allewell NM
    Biochemistry; 1978 Mar; 17(5):784-90. PubMed ID: 343809
    [No Abstract]   [Full Text] [Related]  

  • 4. Spectral alterations associated with the ligand-promoted gross conformational change in aspartate transcarbamoylase.
    Hu CY; Howlett GJ; Schachman HK
    J Biol Chem; 1981 May; 256(10):4998-5004. PubMed ID: 7014567
    [No Abstract]   [Full Text] [Related]  

  • 5. The binding of N-(phosphonacetyl)-L-aspartate to aspartate carbamoyltransferase of Escherichia coli.
    Volź KW; Krause KL; Lipscomb WN
    Biochem Biophys Res Commun; 1986 Apr; 136(2):822-6. PubMed ID: 3518720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bohr effect in Escherichia coli aspartate transcarbamylase. Linkages between substrate binding, proton binding, and conformational transitions.
    Allwell NM; Hofmann GE; Zaug A; Lennick M
    Biochemistry; 1979 Jul; 18(14):3008-15. PubMed ID: 37893
    [No Abstract]   [Full Text] [Related]  

  • 7. Binding of bisubstrate analog promotes large structural changes in the unregulated catalytic trimer of aspartate transcarbamoylase: implications for allosteric regulation.
    Endrizzi JA; Beernink PT; Alber T; Schachman HK
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5077-82. PubMed ID: 10805770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single amino acid substitution in the active site of Escherichia coli aspartate transcarbamoylase prevents the allosteric transition.
    Stieglitz KA; Pastra-Landis SC; Xia J; Tsuruta H; Kantrowitz ER
    J Mol Biol; 2005 Jun; 349(2):413-23. PubMed ID: 15890205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The catalytic mechanism of Escherichia coli aspartate carbamoyltransferase: a molecular modelling study.
    Gouaux JE; Krause KL; Lipscomb WN
    Biochem Biophys Res Commun; 1987 Feb; 142(3):893-7. PubMed ID: 3548720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Submicromolar phosphinic inhibitors of Escherichia coli aspartate transcarbamoylase.
    Coudray L; Kantrowitz ER; Montchamp JL
    Bioorg Med Chem Lett; 2009 Feb; 19(3):900-2. PubMed ID: 19097895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homotropic effects in aspartate transcarbamoylase. What happens when the enzyme binds a single molecule of the bisubstrate analog N-phosphonacetyl-L-aspartate?
    Foote J; Schachman HK
    J Mol Biol; 1985 Nov; 186(1):175-84. PubMed ID: 3908690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation of conformational changes in Ni(II)-substituted aspartate transcarbamoylase: effect of active-site ligands on the regulatory chains.
    Johnson RS; Schachman HK
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1995-9. PubMed ID: 6990418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus-containing inhibitors of aspartate transcarbamoylase from Escherichia coli.
    Laing NM; Chan WW; Hutchinson DW; Oberg B
    FEBS Lett; 1990 Jan; 260(2):206-8. PubMed ID: 2153584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quaternary structural changes in aspartate carbamoyltransferase of Escherichia coli at pH 8.3 and pH 5.8.
    Altman RB; Ladner JE; Lipscomb WN
    Biochem Biophys Res Commun; 1982 Sep; 108(2):592-5. PubMed ID: 6756403
    [No Abstract]   [Full Text] [Related]  

  • 15. Function of threonine-55 in the carbamoyl phosphate binding site of Escherichia coli aspartate transcarbamoylase.
    Xu W; Kantrowitz ER
    Biochemistry; 1989 Dec; 28(26):9937-43. PubMed ID: 2515892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide-protein interaction markedly alters the functional properties of the catalytic subunit of aspartate transcarbamoylase.
    Zhou BB; Schachman HK
    Protein Sci; 1993 Jan; 2(1):103-12. PubMed ID: 8443583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-promoted strengthening of interchain bonding domains in catalytic subunits of aspartate transcarbamoylase.
    Burns DL; Schachman HK
    J Biol Chem; 1982 Oct; 257(20):12214-8. PubMed ID: 7118940
    [No Abstract]   [Full Text] [Related]  

  • 18. Synthesis and in vitro evaluation of aspartate transcarbamoylase inhibitors.
    Coudray L; Pennebaker AF; Montchamp JL
    Bioorg Med Chem; 2009 Nov; 17(22):7680-9. PubMed ID: 19828320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectors of Escherichia coli aspartate transcarbamoylase differentially perturb aspartate binding rather than the T-R transition.
    Hsuanyu YC; Wedler FC
    J Biol Chem; 1988 Mar; 263(9):4172-81. PubMed ID: 3279030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered complementation in Escherichia coli aspartate transcarbamoylase. Heterotropic regulation by quaternary structure stabilization.
    Aucoin JM; Pishko EJ; Baker DP; Kantrowitz ER
    J Biol Chem; 1996 Nov; 271(47):29865-9. PubMed ID: 8939927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.