These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 7015808)
1. Subunit of assembly of Escherichia coli RNA polymerase. Ishihama A Adv Biophys; 1981; 14():1-35. PubMed ID: 7015808 [TBL] [Abstract][Full Text] [Related]
2. Subunit assembly and metabolic stability of E. coli RNA polymerase. Ishihama A; Fujita N; Glass RE Proteins; 1987; 2(1):42-53. PubMed ID: 3328858 [TBL] [Abstract][Full Text] [Related]
3. Functional map of the alpha subunit of Escherichia coli RNA polymerase: insertion analysis of the amino-terminal assembly domain. Kimura M; Ishihama A J Mol Biol; 1995 May; 248(4):756-67. PubMed ID: 7752238 [TBL] [Abstract][Full Text] [Related]
4. Functional map of the alpha subunit of Escherichia coli RNA polymerase. Deletion analysis of the amino-terminal assembly domain. Kimura M; Fujita N; Ishihama A J Mol Biol; 1994 Sep; 242(2):107-15. PubMed ID: 8089834 [TBL] [Abstract][Full Text] [Related]
5. Substitution of the C-terminal domain of the Escherichia coli RNA polymerase alpha subunit by that from Bacillus subtilis makes the enzyme responsive to a Bacillus subtilis transcriptional activator. MencĂa M; Monsalve M; Rojo F; Salas M J Mol Biol; 1998 Jan; 275(2):177-85. PubMed ID: 9466901 [TBL] [Abstract][Full Text] [Related]
6. Functional map of the alpha subunit of Escherichia coli RNA polymerase: amino acid substitution within the amino-terminal assembly domain. Kimura M; Ishihama A J Mol Biol; 1995 Dec; 254(3):342-9. PubMed ID: 7490753 [TBL] [Abstract][Full Text] [Related]
7. Identification of a subunit assembly domain in the alpha subunit of Escherichia coli RNA polymerase. Igarashi K; Fujita N; Ishihama A J Mol Biol; 1991 Mar; 218(1):1-6. PubMed ID: 2002495 [TBL] [Abstract][Full Text] [Related]
9. Subunit assembly in vivo of Escherichia coli RNA polymerase: role of the amino-terminal assembly domain of alpha subunit. Kimura M; Ishihama A Genes Cells; 1996 Jun; 1(6):517-28. PubMed ID: 9078382 [TBL] [Abstract][Full Text] [Related]
10. Mapping of subunit-subunit contact surfaces on the beta subunit of Escherichia coli RNA polymerase. Nomura T; Fujita N; Ishihama A Biochemistry; 1999 Jan; 38(4):1346-55. PubMed ID: 9930997 [TBL] [Abstract][Full Text] [Related]
12. Beta subunit residues 186-433 and 436-445 are commonly used by Esigma54 and Esigma70 RNA polymerase for open promoter complex formation. Wigneshweraraj SR; Nechaev S; Severinov K; Buck M J Mol Biol; 2002 Jun; 319(5):1067-83. PubMed ID: 12079348 [TBL] [Abstract][Full Text] [Related]
13. Kinetic studies and structural models of the association of E. coli sigma(70) RNA polymerase with the lambdaP(R) promoter: large scale conformational changes in forming the kinetically significant intermediates. Saecker RM; Tsodikov OV; McQuade KL; Schlax PE; Capp MW; Record MT J Mol Biol; 2002 Jun; 319(3):649-71. PubMed ID: 12054861 [TBL] [Abstract][Full Text] [Related]
14. [Mutation affecting the rate of RNA-polymerase beta beta'-subunit synthesis in Escherichia coli]. Sever IS; Kaliaeva ES; Nikiforov VG; Danilevskaia ON Genetika; 1982; 18(6):947-55. PubMed ID: 7049836 [TBL] [Abstract][Full Text] [Related]
15. Recombinant Escherichia coli RNA polymerase: purification of individually overexpressed subunits and in vitro assembly. Borukhov S; Goldfarb A Protein Expr Purif; 1993 Dec; 4(6):503-11. PubMed ID: 8286946 [TBL] [Abstract][Full Text] [Related]
16. Insights into Escherichia coli RNA polymerase structure from a combination of x-ray and electron crystallography. Darst SA; Polyakov A; Richter C; Zhang G J Struct Biol; 1998 Dec; 124(2-3):115-22. PubMed ID: 10049799 [TBL] [Abstract][Full Text] [Related]
17. Interplay between the beta' clamp and the beta' jaw domains during DNA opening by the bacterial RNA polymerase at sigma54-dependent promoters. Wigneshweraraj SR; Savalia D; Severinov K; Buck M J Mol Biol; 2006 Jun; 359(5):1182-95. PubMed ID: 16725156 [TBL] [Abstract][Full Text] [Related]
19. Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase. Lewicki BT; Margus T; Remme J; Nierhaus KH J Mol Biol; 1993 Jun; 231(3):581-93. PubMed ID: 8515441 [TBL] [Abstract][Full Text] [Related]