BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

637 related articles for article (PubMed ID: 7016178)

  • 1. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation.
    Brown DA; Cook RA
    Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide specific malic enzyme depending on whether Mg2+ or Mn2+ serves as divalent cation.
    Milne JA; Cook RA
    Biochemistry; 1979 Aug; 18(16):3604-10. PubMed ID: 224913
    [No Abstract]   [Full Text] [Related]  

  • 3. Equilibrium substrate binding studies of the malic enzyme of pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of L-malate to the enzyme-manganese(II)-reduced nicotinamide adenine dinucleotide phosphate ternary complex.
    Pry TA; Hsu RY
    Biochemistry; 1980 Mar; 19(5):951-62. PubMed ID: 7356971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct metal cofactor-induced conformational states in the NAD-specific malic enzyme of Escherichia coli as revealed by proteolysis studies.
    Cook RA
    Biochim Biophys Acta; 1983 Dec; 749(2):198-203. PubMed ID: 6360216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Neurospora crassa nicotinamide adenine dinucleotide specific isocitrate dehydrogenase depending on whether Mg2+ or Mn2+ serves as divalent cation.
    Barratt DG; Cook RA
    Biochemistry; 1978 Apr; 17(8):1561-6. PubMed ID: 25669
    [No Abstract]   [Full Text] [Related]  

  • 6. Nicotinamide-adenine dinucleotide-linked "malic" enzyme in flight muscle of the tse-tse fly (Glossina) and other insects.
    Hoek JB; Pearson DJ; Olembo NK
    Biochem J; 1976 Nov; 160(2):253-62. PubMed ID: 12751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADP-malic enzyme from the C4 plant Flaveria bidentis: nucleotide substrate specificity.
    Ashton AR
    Arch Biochem Biophys; 1997 Sep; 345(2):251-8. PubMed ID: 9308897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of divalent cations in the activation of the NADP+-specific isocitrate dehydrogenase from Pisum sativum L.
    Maloney RJ; Dennis DT
    Can J Biochem; 1977 Sep; 55(9):928-34. PubMed ID: 20207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study of properties of NADP malate dehydrogenase from corn leaves].
    Persanov VM; Voronova EA; Karpilov IuS
    Biokhimiia; 1976 Jul; 41(6):1014-22. PubMed ID: 17432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on regulatory functions of malic enzymes. VI. Purification and molecular properties of NADP-linked malic enzyme from Escherichia coli W.
    Iwakura M; Hattori J; Arita Y; Tokushige M; Katsuki H
    J Biochem; 1979 May; 85(5):1355-65. PubMed ID: 36376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction reactions catalyzed by malic enzyme.
    Park SH; Harris BG; Cook PF
    Biochemistry; 1986 Jul; 25(13):3752-9. PubMed ID: 3741834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of nicotinamide-adenine dinucleotide phosphate analogues and fragments with pigeon liver malic enzyme. Synergistic effect between the nicotinamide and adenine moieties.
    Lee HJ; Chang GG
    Biochem J; 1987 Jul; 245(2):407-14. PubMed ID: 3663167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory effects of potassium and inorganic anions on the NADP-specific malic enzyme of Escherichia coli.
    Brown DA; Cook RA
    Can J Biochem Cell Biol; 1985 Feb; 63(2):128-36. PubMed ID: 3888356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stepwise versus concerted oxidative decarboxylation catalyzed by malic enzyme: a reinvestigation.
    Karsten WE; Cook PF
    Biochemistry; 1994 Mar; 33(8):2096-103. PubMed ID: 8117666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mitochondrial malic enzymes. I. Submitochondrial localization and purification and properties of the NAD(P)+-dependent enzyme from adrenal cortex.
    Mandella RD; Sauer LA
    J Biol Chem; 1975 Aug; 250(15):5877-84. PubMed ID: 238989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of monovalent and divalent cations on the activity of Streptococcus lactis C10 pyruvate kinase.
    Crow VL; Pritchard GG
    Biochim Biophys Acta; 1977 Mar; 481(1):105-14. PubMed ID: 14688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of nicotinamide-adenine dinucleotide phosphate-dependent malate dehydrogenase and isocitrate dehydrogenase in the supply of reduced nicotinamide-adenine dinucleotide phosphate for steroidogenesis in the superovulated rat ovary.
    Flint AP; Denton RM
    Biochem J; 1970 Mar; 117(1):73-83. PubMed ID: 4393612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malic enzyme of chromatium vinosum.
    Sahl HG; TrĂ¼per HG
    Arch Microbiol; 1980 Aug; 127(1):17-24. PubMed ID: 7425783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malic enzymes of rabbit heart mitochondria. Separation and comparison of some characteristics of a nicotinamide adenine dinucleotide-preferring and a nicotinamide adenine dinucleotide phosphate-specific enzyme.
    Lin RC; Davis EJ
    J Biol Chem; 1974 Jun; 249(12):3867-75. PubMed ID: 4151949
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 32.