BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7016192)

  • 1. Membrane potentials in yeast cells measured by direct and indirect methods.
    Vacata V; Kotyk A; Sigler K
    Biochim Biophys Acta; 1981 Apr; 643(1):265-8. PubMed ID: 7016192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetraphenylphosphonium ion is a true indicator of negative plasma-membrane potential in the yeast Rhodotorula glutinis. Experiments under osmotic stress and at low external pH values.
    Höfer M; Künemund A
    Biochem J; 1985 Feb; 225(3):815-9. PubMed ID: 4038875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electrochemical H+ gradient in the yeast Rhodotorula glutinis.
    Höfer M; Nicolay K; Robillard G
    J Bioenerg Biomembr; 1985 Jun; 17(3):175-82. PubMed ID: 4040135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The energetics of D-fucose transport in Saccharomyces fragilis. The influence of the protonmotive force on sugar accumulation.
    Van den Broek PJ; Christianse K; Van Steveninck J
    Biochim Biophys Acta; 1982 Nov; 692(2):231-7. PubMed ID: 7171593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential dependence of the intestinal Na+-dependent sugar transporter.
    Kimmich GA; Randles J; Restrepo D; Montrose M
    Ann N Y Acad Sci; 1985; 456():63-76. PubMed ID: 3911844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small lipid-soluble cations are not membrane voltage probes for Neurospora or Saccharomyces.
    Ballarin-Denti A; Slayman CL; Kuroda H
    Biochim Biophys Acta; 1994 Feb; 1190(1):43-56. PubMed ID: 8110820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some characteristics of tetraphenylphosphonium uptake into Saccharomyces cerevisiae.
    Boxman AW; Barts PW; Borst-Pauwels GW
    Biochim Biophys Acta; 1982 Mar; 686(1):13-8. PubMed ID: 7039677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ca(2+)-transport system of yeast (Endomyces magnusii) mitochondria: independent pathways for Ca(2+) uptake and release.
    Deryabina YI; Zvyagilskaya RA
    Biochemistry (Mosc); 2000 Dec; 65(12):1352-6. PubMed ID: 11173504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible energization of K+ accumulation into metabolizing yeast by the protonmotive force. Binding correction to be applied in the calculation of the yeast membrane potential from tetraphenylphosphonium distribution.
    Boxman AW; Dobbelmann J; Borst-Pauwels GW
    Biochim Biophys Acta; 1984 Apr; 772(1):51-7. PubMed ID: 6370307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutral carrier-based "Ca(2+)-selective" microelectrodes for the measurement of tetraphenylphosphonium.
    Mootha VK; French S; Balaban RS
    Anal Biochem; 1996 May; 236(2):327-30. PubMed ID: 8660512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans.
    Prasad R; Höfer M
    Biochim Biophys Acta; 1986 Oct; 861(2):377-80. PubMed ID: 3530329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Causes of conductance change in yeast cultures.
    Owens JD; Konírová L; Thomas DS
    J Appl Bacteriol; 1992 Jan; 72(1):32-8. PubMed ID: 1541598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Energy-dependent transport of tetraphenylphosphonium ions in Staphylococcus aureus].
    Syrtsov VV; Vinnikov AI
    Ukr Biokhim Zh (1978); 1988; 60(3):98-101. PubMed ID: 3413850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characteristics of microorganisms subjected to the action of a vacuum].
    Imshenetskiĭ AA; Lysenko SV; Pisarenko NF
    Mikrobiologiia; 1982; 51(1):107-10. PubMed ID: 6803105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The measurement of transmembrane electrical potential with lipophilic cations.
    Hockings PD; Rogers PJ
    Biochim Biophys Acta; 1996 Jun; 1282(1):101-6. PubMed ID: 8679645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of membrane potential in polymorphonuclear leukocytes and its changes during surface stimulation.
    Kuroki M; Kamo N; Kobatake Y; Okimasu E; Utsumi K
    Biochim Biophys Acta; 1982 Dec; 693(2):326-34. PubMed ID: 7159582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli.
    Ahmed S; Booth IR
    Biochem J; 1981 Dec; 200(3):573-81. PubMed ID: 6282253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric field-induced effects on yeast cell wall permeabilization.
    Stirke A; Zimkus A; Ramanaviciene A; Balevicius S; Zurauskiene N; Saulis G; Chaustova L; Stankevic V; Ramanavicius A
    Bioelectromagnetics; 2014 Feb; 35(2):136-44. PubMed ID: 24203648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient hyperpolarization of yeast by glucose and ethanol.
    van de Mortel JB; Mulders D; Korthout H; Theuvenet AP; Borst-Pauwels GW
    Biochim Biophys Acta; 1988 Dec; 936(3):421-8. PubMed ID: 3058206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.