These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7016211)

  • 1. Primary structure of a chloramphenicol acetyltransferase: mass spectrometric studies.
    Dell A; Morris HR
    Biomed Mass Spectrom; 1981 Mar; 8(3):128-36. PubMed ID: 7016211
    [No Abstract]   [Full Text] [Related]  

  • 2. The assay of chloramphenicol acetyltransferase activity by high performance liquid chromatography.
    Lovering AM; White LO; Reeves DS
    J Antimicrob Chemother; 1986 Jun; 17(6):821-5. PubMed ID: 3525498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid, sensitive, and inexpensive assay for chloramphenicol acetyltransferase.
    Nordeen SK; Green PP; Fowlkes DM
    DNA; 1987 Apr; 6(2):173-8. PubMed ID: 3472867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for assay of chloramphenicol acetyltransferase from crude cell extract.
    Datta K; Majumdar MK
    Microbiologica; 1985 Jan; 8(1):73-7. PubMed ID: 3856095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkyl isocyanates as active-site-specific reagents for serine proteases. Identification of the active-site serine as the site of reaction.
    Brown WE; Wold F
    Biochemistry; 1973 Feb; 12(5):835-40. PubMed ID: 4686800
    [No Abstract]   [Full Text] [Related]  

  • 6. New observations on the fragmentation properties of peptides under electron impact mass spectrometry.
    Dell A; Morris HR
    Biochem Biophys Res Commun; 1974 Dec; 61(4):1125-32. PubMed ID: 4455250
    [No Abstract]   [Full Text] [Related]  

  • 7. An immunological assay for chloramphenicol acetyltransferase.
    Burns DK; Crowl RM
    Anal Biochem; 1987 May; 162(2):399-404. PubMed ID: 3300416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some electrospray mass spectrometric evidence for the existence of covalent O-acyl enzyme intermediates.
    Ashton DS; Beddell CR; Cooper DJ; Green BN; Oliver RW; Welham KJ
    FEBS Lett; 1991 Nov; 292(1-2):201-4. PubMed ID: 1959607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance to chloramphenicol and metronidazole in anaerobic bacteria.
    Britz ML
    J Antimicrob Chemother; 1981 Dec; 8 Suppl D():49-57. PubMed ID: 6279556
    [No Abstract]   [Full Text] [Related]  

  • 10. Occurrence of chloramphenicol acetyltransferase and Tn9 among chloramphenicol-resistant enteric bacteria from humans and animals.
    Matthews PR; Cameron FH; Stewart PR
    J Antimicrob Chemother; 1983 Jun; 11(6):535-42. PubMed ID: 6576996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of "buried" lysine residues in two variants of chloramphenicol acetyltransferase specified by R-factors.
    Packman LC; Shaw WV
    Biochem J; 1981 Feb; 193(2):525-39. PubMed ID: 6796049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Typhoid in Chile. Permanent susceptibility of Salmonella typhi to chloramphenicol and other drugs].
    Cordano AM; Virgilio R
    Rev Latinoam Microbiol; 1986; 28(1):15-22. PubMed ID: 3461515
    [No Abstract]   [Full Text] [Related]  

  • 13. O'-(epoxyalkyl)tyrosines and (epoxyalkyl)phenylalanine as irreversible inactivators of serine proteases: synthesis and inhibition mechanism.
    Tous G; Bush A; Tous A; Jordan F
    J Med Chem; 1990 Jun; 33(6):1620-34. PubMed ID: 2187995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma-desorption mass spectrometry of intact enzymes and proenzymes.
    Lacey MP; Keough T
    Rapid Commun Mass Spectrom; 1989 Sep; 3(9):323-8. PubMed ID: 2520247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence determination of peptides by mass spectrometry: methods for combining "wet" separation techniques with mass spectrometry.
    Jayasimhulu K; Day RA
    Anal Biochem; 1975 Aug; 67(2):359-71. PubMed ID: 1163762
    [No Abstract]   [Full Text] [Related]  

  • 16. Primary structure of a chloramphenicol acetyltransferase specified by R plasmids.
    Shaw WV; Packman LC; Burleigh BD; Dell A; Morris HR; Hartley BS
    Nature; 1979 Dec 20-27; 282(5741):870-2. PubMed ID: 390404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chloramphenicol acetyltransferase gene of Tn2424: a new breed of cat.
    Parent R; Roy PH
    J Bacteriol; 1992 May; 174(9):2891-7. PubMed ID: 1314803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative evaluation of promoter activity by microinjection of chloramphenicol acetyltransferase hybrid genes into tissue culture cells.
    Buschhausen-Denker G; Arnold HH
    Anal Biochem; 1988 Apr; 170(1):243-7. PubMed ID: 3133957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence analysis of derivatized peptides by high-performance liquid chromatography-mass spectrometry.
    Yu TJ; Schwartz HA; Cohen SA; Vouros P; Karger BL
    J Chromatogr; 1984 Oct; 301(2):425-40. PubMed ID: 6501498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hydrolysis of human IgG with subtilisin.
    Waller M; Normansell DE
    Am J Clin Pathol; 1975 Sep; 64(3):358-64. PubMed ID: 808958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.