These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 7016875)
1. The role of spermine in preventing misacylation by phenylalanyl-tRNA synthetase. Loftfield RB; Eigner EA; Pastuszyn A J Biol Chem; 1981 Jul; 256(13):6729-35. PubMed ID: 7016875 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of acyl transfer ribonucleic acid complexes of Escherichia coli phenylalanyl-tRNA synthetase. A conformational change is rate limiting in catalysis. Baltzinger M; Holler E Biochemistry; 1982 May; 21(10):2460-7. PubMed ID: 7046786 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of discrimination between cognate and non-cognate tRNAs by phenylalanyl-tRNA synthetase from yeast. Krauss G; Riesner D; Maass G Eur J Biochem; 1976 Sep; 68(1):81-93. PubMed ID: 9288 [TBL] [Abstract][Full Text] [Related]
4. Isoleucyl-tRNA synthetase from bakers' yeast: variable discrimination between tRNAIle and tRNAVal and different pathways of cognate and noncognate aminoacylation under standard conditions, in the presence of pyrophosphatase, elongation factor Tu-GTP complex, and spermine. Freist W; Sternbach H Biochemistry; 1984 Nov; 23(24):5742-52. PubMed ID: 6151853 [TBL] [Abstract][Full Text] [Related]
5. Changes in the solution structure of yeast phenylalanine transfer ribonucleic acid associated with aminoacylation and magnesium binding. Potts RO; Ford NC; Fournier MJ Biochemistry; 1981 Mar; 20(6):1653-9. PubMed ID: 7013797 [TBL] [Abstract][Full Text] [Related]
6. The effect of Mg2+ and spermine on aminoacylation of tRNAphe by homologous and heterologous enzymes. Jakubowicz T; Junosza-Wolska B; Chmielewski T Acta Microbiol Pol A; 1973; 5(2):69-73. PubMed ID: 4581763 [No Abstract] [Full Text] [Related]
7. The role of polyamines in the aminoacyl transfer ribonucleic acid synthetase reactions. Demonstration of the requirement for magnesium ion and a secondary stimulatory effect of spermine. Santi DV; Webster RW J Biol Chem; 1975 May; 250(10):3874-7. PubMed ID: 165187 [TBL] [Abstract][Full Text] [Related]
8. Acceptor activity of tRNAPhe from yeasts under special conditions of aminoacylation. Belchev B; Yaneva M Mol Biol (Mosk); 1976; 10(4):663-7. PubMed ID: 15212 [TBL] [Abstract][Full Text] [Related]
9. Increase in fidelity of rat liver Ile-tRNA formation by both spermine and the aminoacyl-tRNA synthetase complex. Kusama-Eguchi K; Irisawa M; Watanabe S; Watanabe K; Igarashi K Arch Biochem Biophys; 1991 Aug; 288(2):495-9. PubMed ID: 1898044 [TBL] [Abstract][Full Text] [Related]
10. Lack of correlation between affinity of the tRNA for the aminoacyl-tRNA synthetase and aminoacylation capacity as studied with modified tRNAPhe. Renaud M; Ehrlich R; Bonnet J; Remy P Eur J Biochem; 1979 Oct; 100(1):157-64. PubMed ID: 385310 [TBL] [Abstract][Full Text] [Related]
11. The aminoacyladenylate mechanism in the aminoacylation reaction of yeast phenylalanyl-tRNA synthetase. Fasiolo F; Fersht AR Eur J Biochem; 1978 Apr; 85(1):85-8. PubMed ID: 346352 [TBL] [Abstract][Full Text] [Related]
12. Effects of spermine and magnesium ions on the aminoacylation of yeast tRNA(Tyr). Plohl M; Kućan Z Biochimie; 1988 May; 70(5):637-44. PubMed ID: 3139082 [TBL] [Abstract][Full Text] [Related]
13. Mutual adaptation of yeast tRNAPhe and phenylalanyl-tRNA synthetase: Possible role of tryptophan residues and long range interactions. Lefevre JF; Ehrlich R; Kilhoffer MC; Remy P FEBS Lett; 1980 Jun; 114(2):219-24. PubMed ID: 6993228 [No Abstract] [Full Text] [Related]
15. Zinc(II)-dependent synthesis of diadenosine 5', 5"' -P(1) ,P(4) -tetraphosphate by Escherichia coli and yeast phenylalanyl transfer ribonucleic acid synthetases. Plateau P; Mayaux JF; Blanquet S Biochemistry; 1981 Aug; 20(16):4654-62. PubMed ID: 7028092 [TBL] [Abstract][Full Text] [Related]
16. Specific interaction of anticodon loop residues with yeast phenylalanyl-tRNA synthetase. Bruce AG; Uhlenbeck OC Biochemistry; 1982 Aug; 21(17):3921-6. PubMed ID: 6751381 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of anticooperative binding of phenylalanyl-tRNAPhe and tRNAPhe to phenylalanyl-tRNA synthetase of Escherichia coli K10. Holler E Biochemistry; 1980 Apr; 19(7):1397-402. PubMed ID: 6992864 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the steady-state mechanism of the aminoacylation of tRNAPhe by phenylalanyl-tRNA synthetase from yeast. Thiebe R Nucleic Acids Res; 1978 Jun; 5(6):2055-71. PubMed ID: 353737 [TBL] [Abstract][Full Text] [Related]
19. [Role of arginine residues in phenylalanyl-tRNA synthetase interaction with substrates]. Gorshkova II; Datsiĭ II; Lavrik OI Mol Biol (Mosk); 1980; 14(1):118-25. PubMed ID: 7015113 [TBL] [Abstract][Full Text] [Related]
20. Equivalent and non-equivalent binding sites for tRNA on aminoacyl-tRNA synthetases. Krauss G; Pingoud A; Boehme D; Riesner D; Peters F; Maas G Eur J Biochem; 1975 Jul; 55(3):517-29. PubMed ID: 1100384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]