BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 7018594)

  • 1. [Affinity modification of creatine kinase from rabbit skeletal muscles using gamma-(p-azidoanilide)-ATP].
    Akopian ZhI; Gazariants MG; Mkrtchian ES; Nersova LS; Lavrik OI
    Biokhimiia; 1981 Feb; 46(2):262-8. PubMed ID: 7018594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Affinity modification of rabbit skeletal muscle creatine kinase by a fluorescent analog of ATP: gamma-(azidoanalide)-1, N6-ethenoadenosine triphosphate].
    Denisov AIu; Nevinskiĭ GA; Lavrik OI
    Biokhimiia; 1982 Feb; 47(2):184-90. PubMed ID: 7066423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Affinity modification of creatine kinase from the rabbit skeletal muscle by gamma-amide of ATP--a nitrogen mustard derivative].
    Novinskiĭ GA; Gazariants MG; Lavrik OI
    Bioorg Khim; 1984 May; 10(5):656-65. PubMed ID: 6548633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Interaction of rabbit muscle creatine kinase with a reactive ATP derivative-ATP gamma-4(N-2-chloroethyl-N-methyl-amino)-benzylamidate].
    Mkrtchian ZS; Nersesova LS; Akopian ZhI; Babkina GT; Buneva VN
    Biokhimiia; 1980 May; 45(5):806-11. PubMed ID: 7378502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Affinity modification of creatine kinase from rabbit skeletal muscle by 2',3'-dialdehyde derivatives of ADP and ATP].
    Nevinskiĭ GA; Gazariants MG; Mkrtchian ZS
    Bioorg Khim; 1983 Apr; 9(4):487-95. PubMed ID: 6679775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Reaction between rabbit skeletal muscle creatine kinase and ATP gamma-amides].
    Buneva VN; Gorshkova II; Lavrik OI; Mustaev AA; Popov RA
    Mol Biol (Mosk); 1980; 14(6):1308-12. PubMed ID: 7442672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Creatine kinase from rabbit skeletal muscles: formation of O-acyltyrosine as a result of the activation of the carboxylic group of the enzyme active site by affinity reagents, nucleotide imidazolides].
    Nevinskiĭ GA; Lavrik OI; Gazariants MG; Mkrtchian ZS; Akopian ZhI
    Bioorg Khim; 1987 Apr; 13(4):506-18. PubMed ID: 3606672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparative analysis of affinity modification of several aminoacyl-tRNA synthetases with gamma-(p-azidoanilide)-ATP].
    Bulychev NA; Lavrik OI; Nevinskiĭ GA
    Mol Biol (Mosk); 1980; 14(3):558-67. PubMed ID: 6995829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Exposure of cooperativity of the active sites of rabbit skeletal muscle creatine kinase during its interaction with gamma-amides of ATP].
    Gorshkova II; Lavrik OI; Popov RA
    Biokhimiia; 1981 Sep; 46(9):1564-9. PubMed ID: 7295820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoaffinity labelling of arginine kinase and creatine kinase with a gamma-P-substituted arylazido analogue of ATP.
    Vandest P; Labbe JP; Kassab R
    Eur J Biochem; 1980 Mar; 104(2):433-42. PubMed ID: 6244950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Essential carboxylic groups of active sites of creatine kinase M- and M'-subunits in rabbit skeletal muscles].
    Nevinskiĭ GA; Gazariants MG
    Bioorg Khim; 1987 Apr; 13(4):498-505. PubMed ID: 3606671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Inhibition of the phosphorylase kinase activity by ATP analogs and their binding to the enzyme subunits].
    Guliaeva NV; Vul'fson PL; Severin ES
    Biokhimiia; 1978 Feb; 43(2):373-82. PubMed ID: 647085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Interaction of various nucleotide-dependent enzymes with bifunctional analogs of ATP, derivatives of polymethylene diamines].
    Nevinskiĭ GA; Vtorushina IA; Bulychev NV; Kovaleva GK; Lavrik OI
    Mol Biol (Mosk); 1985; 19(2):467-78. PubMed ID: 4000111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of the structure and function of creatine kinase active sites using affinity modification].
    Lavrik OI; Nevinskiĭ GA
    Bioorg Khim; 1987 Jul; 13(7):869-93. PubMed ID: 3314872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential arginine residues of creatine kinase from beef heart mitochondria.
    Severin SE; Belousova LV; Moskvitina EL
    Biochem Int; 1983 Feb; 6(2):149-56. PubMed ID: 6332626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cysteinyl residues in the phosphorylase kinase activity as revealed by iodacetamide modification.
    Shur SA; Vulfson PL; Severin SE
    Biochem Int; 1983 Aug; 7(2):197-206. PubMed ID: 6433931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of phosphorylase kinase with the 2',3'-dialdehyde derivative of adenosine triphosphate. 1. Kinetics of inactivation.
    King MM; Carlson GM
    Biochemistry; 1981 Jul; 20(15):4382-7. PubMed ID: 7284329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of inversion spin transfer to monitor creatine kinase kinetics in rat skeletal muscle in vivo.
    Haseler LJ; Brooks WM; Irving MG; Bulliman BT; Kuchel PW; Doddrell DM
    Biochem Int; 1986 Apr; 12(4):613-8. PubMed ID: 3718523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Allosteric properties of muscle creatine kinase].
    Chetverikova EP; Rozanova NA
    Biokhimiia; 1977 Mar; 42(3):481-9. PubMed ID: 861308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP binding site of mitochondrial creatine kinase. Affinity labelling of Asp-335 with C1RATP.
    James P; Wyss M; Lutsenko S; Wallimann T; Carafoli E
    FEBS Lett; 1990 Oct; 273(1-2):139-43. PubMed ID: 2226844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.