BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7019297)

  • 1. NMR determination of hydrogen transfer stereospecificity of alpha-keto acid dehydrogenase complexes: a one-step method.
    Zhou MA; Wong SS
    J Biochem Biophys Methods; 1981 Jun; 4(5-6):329-38. PubMed ID: 7019297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of a specific lipoamide dehydrogenase for a branched-chain keto acid dehydrogenase from Pseudomonas putida.
    Sokatch JR; McCully V; Gebrosky J; Sokatch DJ
    J Bacteriol; 1981 Nov; 148(2):639-46. PubMed ID: 6895373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the hydride transfer stereospecificity of nicotinamide adenine dinucleotide linked oxidoreductases by proton magnetic resonance.
    Arnold LJ; You K; Allison WS; Kaplan NO
    Biochemistry; 1976 Nov; 15(22):4844-9. PubMed ID: 186097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification of a branched-chain keto acid dehydrogenase from Pseudomonas putida.
    Sokatch JR; McCully V; Roberts CM
    J Bacteriol; 1981 Nov; 148(2):647-52. PubMed ID: 7298579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A one-step PMR determination of hydrogen transfer stereospecificity of NADP+-linked oxidoreductases.
    Wong SS; Wong LJ
    Int J Biochem; 1983; 15(2):147-50. PubMed ID: 6822314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using lipoate enantiomers and thioredoxin to study the mechanism of the 2-oxoacid-dependent dihydrolipoate production by the 2-oxoacid dehydrogenase complexes.
    Bunik V; Shoubnikova A; Loeffelhardt S; Bisswanger H; Borbe HO; Follmann H
    FEBS Lett; 1995 Sep; 371(2):167-70. PubMed ID: 7672120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehydrogenases of alpha-keto acids: essential groups of the active centers.
    Severin SE; Khailova LS; Gomazkova VS
    Adv Enzyme Regul; 1986; 25():347-75. PubMed ID: 3812084
    [No Abstract]   [Full Text] [Related]  

  • 8. Broad-zone active-enzyme chromatography. Keto-acid dehydrogenases as associating systems.
    Davis LC; Radke GA
    Biophys Chem; 1983 Oct; 18(3):241-7. PubMed ID: 6688956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method for the rapid determination of the stereospecificity of NAD-dependent dehydrogenases applied to mammalian IMP dehydrogenase and bacterial NADH peroxidase.
    Cooney D; Hamel E; Cohen M; Kang GJ; Dalal M; Marquez V
    Biochim Biophys Acta; 1987 Nov; 916(1):89-93. PubMed ID: 2889473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of E1 component of human branched-chain alpha-keto acid dehydrogenase complex in Escherichia coli by cotransformation with chaperonins GroEL and GroES.
    Wynn RM; Davie JR; Song JL; Chuang JL; Chuang DT
    Methods Enzymol; 2000; 324():179-91. PubMed ID: 10989429
    [No Abstract]   [Full Text] [Related]  

  • 11. Kinetics and specificity of reductive acylation of wild-type and mutated lipoyl domains of 2-oxo-acid dehydrogenase complexes from Azotobacter vinelandii.
    Berg A; Westphal AH; Bosma HJ; de Kok A
    Eur J Biochem; 1998 Feb; 252(1):45-50. PubMed ID: 9523710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of glycine oxidation by pyruvate, alpha-ketoglutarate, and branched-chain alpha-keto acids in rat liver mitochondria: presence of interaction between the glycine cleavage system and alpha-keto acid dehydrogenase complexes.
    Kochi H; Seino H; Ono K
    Arch Biochem Biophys; 1986 Sep; 249(2):263-72. PubMed ID: 3753002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic in situ analysis by 1H-NMR of the hydrogen transfer stereospecificity of NAD(P)+-dependent dehydrogenases.
    Nakajima N; Nakamura K; Esaki N; Tanaka H; Soda K
    J Biochem; 1989 Sep; 106(3):515-7. PubMed ID: 2575093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A trail of research from lipoic acid to alpha-keto acid dehydrogenase complexes.
    Reed LJ
    J Biol Chem; 2001 Oct; 276(42):38329-36. PubMed ID: 11477096
    [No Abstract]   [Full Text] [Related]  

  • 15. Chain folding in the dihydrolipoyl acyltransferase components of the 2-oxo-acid dehydrogenase complexes from Escherichia coli. Identification of a segment involved in binding the E3 subunit.
    Packman LC; Perham RN
    FEBS Lett; 1986 Oct; 206(2):193-8. PubMed ID: 3530810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-Oxo acid dehydrogenase multienzyme complexes: domains, dynamics, and design.
    Perham RN; Packman LC
    Ann N Y Acad Sci; 1989; 573():1-20. PubMed ID: 2699393
    [No Abstract]   [Full Text] [Related]  

  • 17. Uncertainties in the mechanism of thiamin pyrophosphate-dependent alpha-keto acid dehydrogenase complexes.
    Nutr Rev; 1984 Sep; 42(9):328-30. PubMed ID: 6504412
    [No Abstract]   [Full Text] [Related]  

  • 18. 2-Oxoacid dehydrogenase complexes of Escherichia coli: cellular amounts and patterns of synthesis.
    Smith MW; Neidhardt FC
    J Bacteriol; 1983 Oct; 156(1):81-8. PubMed ID: 6311808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and posttranslational modification of lipoyl domain of 2-oxo-acid dehydrogenase multienzyme complexes.
    Perham RN
    Methods Enzymol; 1995; 251():436-48. PubMed ID: 7651225
    [No Abstract]   [Full Text] [Related]  

  • 20. 2-Oxo acid dehydrogenase multi-enzyme complexes: in the beginning and halfway there.
    Perham RN; Packman LC; Radford SE
    Biochem Soc Symp; 1987; 54():67-81. PubMed ID: 3332999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.