BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 7019379)

  • 1. Mechanism of action of the C4 nephritic factor. Deregulation of the classical pathway of C3 convertase.
    Gigli I; Sorvillo J; Mecarelli-Halbwachs L; Leibowitch J
    J Exp Med; 1981 Jul; 154(1):1-12. PubMed ID: 7019379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation and deregulation of the fluid-phase classical pathway C3 convertase.
    Gigli I; Sorvillo J; Halbwachs-Mecarelli L
    J Immunol; 1985 Jul; 135(1):440-4. PubMed ID: 3158705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protection of the classical and alternative complement pathway C3 convertases, stabilized by nephritic factors, from decay by the human C3b receptor.
    Fischer E; Kazatchkine MD; Mecarelli-Halbwachs L
    Eur J Immunol; 1984 Dec; 14(12):1111-4. PubMed ID: 6240408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the classical pathway C3 convertase by plasma proteins C4 binding protein and C3b inactivator.
    Gigli I; Fujita T; Nussenzweig V
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6596-600. PubMed ID: 293746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface modulation of classical pathway activation: C2 and C3 convertase formation and regulation on sheep, guinea pig, and human erythrocytes.
    Brown EJ; Ramsey J; Hammer CH; Frank MM
    J Immunol; 1983 Jul; 131(1):403-8. PubMed ID: 6602833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C3 nephritic factor stabilization of the classic C3 convertase: a role for C2 in C3 nephritic factor activity.
    McLean RH; Nilson SH
    Proc Soc Exp Biol Med; 1979 Jul; 161(3):358-63. PubMed ID: 461464
    [No Abstract]   [Full Text] [Related]  

  • 7. Monoclonal anti-human C4b antibodies: stabilization and inhibition of the classical-pathway C3 convertase.
    Ichihara C; Nakamura T; Nagasawa S; Koyama J
    Mol Immunol; 1986 Feb; 23(2):151-7. PubMed ID: 2422544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of the covalent C3b-binding site on C4b within the complement classical pathway C5 convertase, C4b2a3b.
    Kozono H; Kinoshita T; Kim YU; Takata-Kozono Y; Tsunasawa S; Sakiyama F; Takeda J; Hong K; Inoue K
    J Biol Chem; 1990 Aug; 265(24):14444-9. PubMed ID: 2387864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model system for the study of the assembly and regulation of human complement C3 convertase (classical pathway).
    Thielens NM; Colomb MG
    Eur J Immunol; 1986 Jun; 16(6):617-22. PubMed ID: 3487454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of decay-accelerating factor on the assembly of the classical and alternative pathway C3 convertases in the presence of C4 or C3 nephritic factor.
    Ito S; Tamura N; Fujita T
    Immunology; 1989 Dec; 68(4):449-52. PubMed ID: 2481642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of the C3 convertase of the classical pathway of human complement system by size exclusion high-performance liquid chromatography.
    Nagasawa S; Kobayashi C; Maki-Suzuki T; Yamashita N; Koyama J
    J Biochem; 1985 Feb; 97(2):493-9. PubMed ID: 3874204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epstein-Barr virus transformed B cell lines derived from patients with systemic lupus erythematosus produce a nephritic factor of the classical complement pathway.
    Hiramatsu M; Tsokos GC
    Clin Immunol Immunopathol; 1988 Jan; 46(1):91-9. PubMed ID: 2826058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of action of decay-accelerating factor (DAF). DAF inhibits the assembly of C3 convertases by dissociating C2a and Bb.
    Fujita T; Inoue T; Ogawa K; Iida K; Tamura N
    J Exp Med; 1987 Nov; 166(5):1221-8. PubMed ID: 2445886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent association of C3b with C4b within C5 convertase of the classical complement pathway.
    Takata Y; Kinoshita T; Kozono H; Takeda J; Tanaka E; Hong K; Inoue K
    J Exp Med; 1987 Jun; 165(6):1494-507. PubMed ID: 3495629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes.
    Medof ME; Kinoshita T; Nussenzweig V
    J Exp Med; 1984 Nov; 160(5):1558-78. PubMed ID: 6238120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences between the binding sites of the complement regulatory proteins DAF, CR1, and factor H on C3 convertases.
    Pangburn MK
    J Immunol; 1986 Mar; 136(6):2216-21. PubMed ID: 2419425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The human complement system: assembly of the classical pathway C3 convertase.
    Kerr MA
    Biochem J; 1980 Jul; 189(1):173-81. PubMed ID: 6906228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of high affinity C5 convertase of the classical pathway of complement.
    Rawal N; Pangburn MK
    J Biol Chem; 2003 Oct; 278(40):38476-83. PubMed ID: 12878586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complement receptor is an inhibitor of the complement cascade.
    Iida K; Nussenzweig V
    J Exp Med; 1981 May; 153(5):1138-50. PubMed ID: 6910481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of iodine and thiol-blocking reagents on complement component C2 and on the assembly of the classical-pathway C3 convertase.
    Kerr MA; Parkes C
    Biochem J; 1984 Apr; 219(2):391-9. PubMed ID: 6611150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.