These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7020338)

  • 21. [Effect of vitrification state of protective solutions on recovery of red blood cells after lyophilization preservation].
    Quan GB; Han Y; Liu XZ; Liu A; Jin P; Cao W
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2003 Jun; 11(3):308-11. PubMed ID: 12844420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fusion and haemolysis of erythrocytes caused by three togaviruses: Semliki Forest, Sindbis and rubella.
    Väänänen P; Kääriäinen L
    J Gen Virol; 1980 Feb; 46(2):467-75. PubMed ID: 6770037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PREVENTION OF HEMOLYSIS OF LARGE VOLUMES OF RED BLOOD CELLS SLOWLY FROZEN AND THAWED IN THE PRESENCE OF DIMETHYLSULFOXIDE.
    HUGGINS CE
    Transfusion; 1963; 3():483-93. PubMed ID: 14084911
    [No Abstract]   [Full Text] [Related]  

  • 24. Rubella antibody detection by single radial haemolysis-in-gel (SRHG) and haemagglutination--inhibition (HAI) techniques.
    Raveendranath M; Shanmugam J
    Indian J Pathol Microbiol; 1983 Jan; 26(1):21-5. PubMed ID: 6358014
    [No Abstract]   [Full Text] [Related]  

  • 25. Evaluation of two distinct cryoprotectants for cryopreservation of human red blood cell concentrates.
    Korsak J; Goller A; Rzeszotarska A; Pleskacz K
    Cryo Letters; 2014; 35(1):15-21. PubMed ID: 24872153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of storage temperature on the stability of frozen erythrocytes.
    Spieles G; Kresin M; Loges K; Sputtek A; Heschel I; Rau G
    Cryobiology; 1995 Aug; 32(4):366-78. PubMed ID: 7544712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of different resuspension media on the post-thaw characteristics of frozen blood.
    Amer KA; Pepper DS; Prowse CV
    Br J Haematol; 1980 Apr; 44(4):635-44. PubMed ID: 7378320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term storage of blood in liquid nitrogen, and the response of the recovered red cells to haemagglutination by viruses.
    Rodgers FG
    J Clin Pathol; 1980 Jan; 33(1):8-10. PubMed ID: 7358860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PRESERVATION OF TROUT AND SALMON ERYTHROCYTES FOR BLOOD TYPING BY FREEZING WITH DIMETHYL SULPHOXIDE.
    HODGINS HO; RIDGWAY GJ
    Nature; 1964 Mar; 201():1336-7. PubMed ID: 14151429
    [No Abstract]   [Full Text] [Related]  

  • 30. The use of frozen erythrocytes in macrophage studies. 1. Attachment to the foreign surface receptor of the macrophages.
    Myhrvold V; Jonsen J; Mørland B
    Acta Pathol Microbiol Immunol Scand B; 1982 Aug; 90(4):303-7. PubMed ID: 7136705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of red blood cell preservation by droplet freezing with non-permeable cryoprotective agents in blood group antigen reactivity.
    Chagas MA; Chaves DG; Haddad SK; Ubiali EM; Schmidt LC; Silva-Malta MC
    Transfus Med; 2017 Apr; 27(2):142-146. PubMed ID: 28111825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cryopreservation of sheep red blood cells. 2. Purified polyvinylpyrrolidone and hydrolyzed starch as protective agents.
    Myhrvold V
    Acta Vet Scand; 1979; 20(4):531-6. PubMed ID: 546210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro study of the protective effect of trehalose and dextran during freezing of human red blood cells in liquid nitrogen.
    Pellerin-Mendes C; Million L; Marchand-Arvier M; Labrude P; Vigneron C
    Cryobiology; 1997 Sep; 35(2):173-86. PubMed ID: 9299109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An experiment with glycerol-frozen red blood cells stored at -80 degrees C for up to 37 years.
    Valeri CR; Ragno G; Pivacek LE; Cassidy GP; Srey R; Hansson-Wicher M; Leavy ME
    Vox Sang; 2000; 79(3):168-74. PubMed ID: 11111236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Addition of oligosaccharide decreases the freezing lesions on human red blood cell membrane in the presence of dextran and glucose.
    Quan GB; Han Y; Liu MX; Fang L; Du W; Ren SP; Wang JX; Wang Y
    Cryobiology; 2011 Apr; 62(2):135-44. PubMed ID: 21276438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prolonged post-thaw shelf life of red cells frozen without prefreeze removal of excess glycerol.
    Lelkens CC; de Korte D; Lagerberg JW
    Vox Sang; 2015 Apr; 108(3):219-25. PubMed ID: 25471217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of a large-scale frozen blood program.
    Szymanski IO; Carrington EJ
    Transfusion; 1977; 17(5):431-7. PubMed ID: 910259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on the conditions required for optimum recovery of Tetrahymena pyriformis strain S (Phenoset A) after freezing to and thawing from -196 C.
    Osborne JA; Lee D
    J Protozool; 1975 May; 22(2):233-7. PubMed ID: 807716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Breakage rate for red blood cells frozen with 40 percent (wt/vol) glycerol in 800-mL polyvinylchloride plastic bags stored in rigid cardboard boxes at -80 degrees C.
    Valeri CR; Ragno G
    Transfusion; 2005 May; 45(5):822-3; author reply 823. PubMed ID: 15847678
    [No Abstract]   [Full Text] [Related]  

  • 40. Effects of pre-freeze incubation of human red blood cells with various sugars on postthaw recovery when using a dextran-rapid cooling protocol.
    Quan GB; Han Y; Liu MX; Gao F
    Cryobiology; 2009 Dec; 59(3):258-67. PubMed ID: 19665011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.