These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 7020366)

  • 1. Amino acids and presynaptic inhibition.
    Davidoff RA
    Adv Biochem Psychopharmacol; 1981; 29():249-55. PubMed ID: 7020366
    [No Abstract]   [Full Text] [Related]  

  • 2. Further evidence suggesting the absence of acidic amino acid receptors on primary afferent terminals in the frog [proceedings].
    Evans RH
    J Physiol; 1979 Aug; 293():68P. PubMed ID: 501648
    [No Abstract]   [Full Text] [Related]  

  • 3. Pentobarbitone affects post-synaptic inhibition by presynaptic mechanisms [proceedings].
    Aickin CC; Deisz RA
    J Physiol; 1979 Feb; 287():27P-28P. PubMed ID: 430407
    [No Abstract]   [Full Text] [Related]  

  • 4. Ionic mechanisms of neutral amino acids and 5-hydroxytryptamine presynaptic inhibition in the spinal afferents.
    Komissarov IV; Abramets II
    Acta Physiol Pharmacol Bulg; 1982; 8(1-2):93-6. PubMed ID: 6812390
    [No Abstract]   [Full Text] [Related]  

  • 5. [The role of some aminoacids in the mechanisms of central inhibition (author's transl)].
    Strata P
    Riv Patol Nerv Ment; 1974 Aug; 95(4):290-9. PubMed ID: 4157161
    [No Abstract]   [Full Text] [Related]  

  • 6. Actions of GABA on mammalian neurones, axons, and nerve terminals.
    Brown DA; Higgins AJ; Marsh S; Smart TG
    Adv Biochem Psychopharmacol; 1981; 29():321-6. PubMed ID: 7020367
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibitory connections between antagonistic motor neurones of the crayfish walking legs.
    Pearlstein E; Watson AH; Bévengut M; Cattaert D
    J Comp Neurol; 1998 Sep; 399(2):241-54. PubMed ID: 9721906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central inhibitory microcircuits controlling spike propagation into sensory terminals.
    Watson A; Le Bon-Jego M; Cattaert D
    J Comp Neurol; 2005 Apr; 484(2):234-48. PubMed ID: 15736226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Presynaptic inhibition--an intra-organ mechanism of the regulation of heart afferents].
    Frolov VA; Bilibin DP; Shevelev OA
    Dokl Akad Nauk SSSR; 1986; 287(2):482-5. PubMed ID: 3698802
    [No Abstract]   [Full Text] [Related]  

  • 10. Distinct mechanisms of presynaptic inhibition at GABAergic synapses of the rat substantia nigra pars compacta.
    Giustizieri M; Bernardi G; Mercuri NB; Berretta N
    J Neurophysiol; 2005 Sep; 94(3):1992-2003. PubMed ID: 15944237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the involvement of nigrothalamic GABA neurons in circling behaviour in the rat.
    Kilpatrick IC; Starr MS; James TA; MacLeod NK
    Adv Biochem Psychopharmacol; 1981; 30():205-24. PubMed ID: 7331935
    [No Abstract]   [Full Text] [Related]  

  • 13. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors.
    Nisenbaum ES; Berger TW; Grace AA
    Synapse; 1993 Jul; 14(3):221-42. PubMed ID: 8105549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shunting versus inactivation: simulation of GABAergic inhibition in spider mechanoreceptors suggests that either is sufficient.
    French AS; Panek I; Torkkeli PH
    Neurosci Res; 2006 Jun; 55(2):189-96. PubMed ID: 16616790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycine-immunoreactive terminals in the rat trigeminal motor nucleus: light- and electron-microscopic analysis of their relationships with motoneurones and with GABA-immunoreactive terminals.
    Yang HW; Min MY; Appenteng K; Batten TF
    Brain Res; 1997 Feb; 749(2):301-19. PubMed ID: 9138731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strychnine sensitive inhibition in the dorsal horn of mammalian spinal cord.
    Bagust J; Green KA; Kerkut GA
    Brain Res; 1981 Aug; 217(2):425-9. PubMed ID: 7248801
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of signal substances in synapses made between primary afferents and their associated axon terminals in the rat trigeminal sensory nuclei.
    Bae YC; Ihn HJ; Park MJ; Ottersen OP; Moritani M; Yoshida A; Shigenaga Y
    J Comp Neurol; 2000 Mar; 418(3):299-309. PubMed ID: 10701828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructure of the circuit providing input to the crayfish lateral giant neurons.
    Lee SC; Krasne FB
    J Comp Neurol; 1993 Jan; 327(2):271-88. PubMed ID: 8425945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depression of GABAergic input to identified hippocampal neurons by group III metabotropic glutamate receptors in the rat.
    Kogo N; Dalezios Y; Capogna M; Ferraguti F; Shigemoto R; Somogyi P
    Eur J Neurosci; 2004 May; 19(10):2727-40. PubMed ID: 15147307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deficit of quantal release of GABA in experimental models of temporal lobe epilepsy.
    Hirsch JC; Agassandian C; Merchán-Pérez A; Ben-Ari Y; DeFelipe J; Esclapez M; Bernard C
    Nat Neurosci; 1999 Jun; 2(6):499-500. PubMed ID: 10448211
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.