BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 702044)

  • 1. Neuronal control of swimming in the medicinal leech. V. Connexions between the oscillatory interneurones and the motor neurones.
    Poon M; Friesen WO; Stent GS
    J Exp Biol; 1978 Aug; 75():45-63. PubMed ID: 702044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal control of swimming in the medicinal leech. IV. Identification of a network of oscillatory interneurones.
    Friesen WO; Poon M; Stent GS
    J Exp Biol; 1978 Aug; 75():25-43. PubMed ID: 702043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythmic swimming activity in neurones of the isolated nerve cord of the leech.
    Kristan WB; Calabrese RL
    J Exp Biol; 1976 Dec; 65(3):643-68. PubMed ID: 1018167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An oscillatory neuronal circuit generating a locomotory rhythm.
    Friesen WO; Poon M; Stent GS
    Proc Natl Acad Sci U S A; 1976 Oct; 73(10):3734-8. PubMed ID: 1068483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal generation of the leech swimming movement.
    Stent GS; Kristan WB; Friesen WO; Ort CA; Poon M; Calabrese RL
    Science; 1978 Jun; 200(4348):1348-57. PubMed ID: 663615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory modification of leech swimming: interactions between ventral stretch receptors and swim-related neurons.
    Cang J; Yu X; Friesen WO
    J Comp Physiol A; 2001 Sep; 187(7):569-79. PubMed ID: 11730304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic basis of swim initiation in the leech. III. Synaptic effects of serotonin-containing interneurones (cells 21 and 61) on swim CPG neurones (cells 18 and 208).
    Nusbaum MP
    J Exp Biol; 1986 May; 122():303-21. PubMed ID: 3723073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal factors influencing the decision to swim in the medicinal leech.
    Brodfuehrer PD; Burns A
    Neurobiol Learn Mem; 1995 Mar; 63(2):192-9. PubMed ID: 7663893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swim initiation in the leech by serotonin-containing interneurones, cells 21 and 61.
    Nusbaum MP; Kristan WB
    J Exp Biol; 1986 May; 122():277-302. PubMed ID: 3723072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural mechanisms generating the leech swimming rhythm: swim-initiator neurons excite the network of swim oscillator neurons.
    Nusbaum MP; Friesen WO; Kristan WB; Pearce RA
    J Comp Physiol A; 1987 Aug; 161(3):355-66. PubMed ID: 3668878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. I. Output connections of Tr1 and Tr2.
    Brodfuehrer PD; Friesen WO
    J Comp Physiol A; 1986 Oct; 159(4):489-502. PubMed ID: 3783502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of activity and the effects of activation of the fast conducting system on the behaviour of unrestrained leeches.
    Magni F; Pellegrino M
    J Exp Biol; 1978 Oct; 76():123-35. PubMed ID: 712325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of leech swimming activity by the cephalic ganglia.
    Brodfuehrer PD; Friesen WO
    J Neurobiol; 1986 Nov; 17(6):697-705. PubMed ID: 3794692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal control of leech swimming.
    Brodfuehrer PD; Debski EA; O'Gara BA; Friesen WO
    J Neurobiol; 1995 Jul; 27(3):403-18. PubMed ID: 7673898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intersegmental coordination of the leech swimming rhythm. II. Comparison of long and short chains of ganglia.
    Pearce RA; Friesen WO
    J Neurophysiol; 1985 Dec; 54(6):1460-72. PubMed ID: 4087043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurons controlling the initiation, generation and modulation of leech swimming.
    Kristan WB; Weeks JC
    Symp Soc Exp Biol; 1983; 37():243-60. PubMed ID: 6679114
    [No Abstract]   [Full Text] [Related]  

  • 17. Membrane properties and selective connexions of identified leech neurones in culture.
    Fuchs PA; Nicholls JG; Ready DF
    J Physiol; 1981 Jul; 316():203-23. PubMed ID: 7320865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. II. Role of segmental swim-initiating interneurons.
    Brodfuehrer PD; Friesen WO
    J Comp Physiol A; 1986 Oct; 159(4):503-10. PubMed ID: 3023603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord.
    Dale N
    J Physiol; 1985 Jun; 363():61-70. PubMed ID: 4020706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of two forms of locomotion by a previously identified trigger interneuron for swimming in the medicinal leech.
    Brodfuehrer PD; McCormick K; Tapyrik L; Albano AM; Graybeal C
    Invert Neurosci; 2008 Mar; 8(1):31-9. PubMed ID: 18095011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.