These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 702044)

  • 21. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. II. Role of identified interneurons.
    Wittenberg G; Kristan WB
    J Neurophysiol; 1992 Nov; 68(5):1693-707. PubMed ID: 1479439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lateral giant fibre activation of exopodite motor neurones in the crayfish tailfan.
    Nagayama T; Araki M; Newland PL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Sep; 188(8):621-30. PubMed ID: 12355238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intersegmental coordination of the leech swimming rhythm. I. Roles of cycle period gradient and coupling strength.
    Pearce RA; Friesen WO
    J Neurophysiol; 1985 Dec; 54(6):1444-59. PubMed ID: 4087042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of swimming behavior in the medicinal leech. IV. Serotonin-induced alteration of synaptic interactions between neurons of the swim circuit.
    Mangan PS; Cometa AK; Friesen WO
    J Comp Physiol A; 1994 Dec; 175(6):723-36. PubMed ID: 7807416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excitatory connections of nonspiking interneurones in the terminal abdominal ganglion of the crayfish.
    Namba H; Nagayama T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Aug; 201(8):773-81. PubMed ID: 26038269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interneuronal and motor patterns during crawling behavior of semi-intact leeches.
    Baader AP
    J Exp Biol; 1997 May; 200(Pt 9):1369-81. PubMed ID: 9172419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural control of heartbeat in the leech and in some other invertebrates.
    Stent GS; Thompson WJ; Calabrese RL
    Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The neuronal basis of the behavioral choice between swimming and shortening in the leech: control is not selectively exercised at higher circuit levels.
    Shaw BK; Kristan WB
    J Neurosci; 1997 Jan; 17(2):786-95. PubMed ID: 8987800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An interneuronal relay for group I and II muscle afferents in the midlumbar segments of the cat spinal cord.
    Edgley SA; Jankowska E
    J Physiol; 1987 Aug; 389():647-74. PubMed ID: 3681739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of the segmental swim-generating system by a pair of identified interneurons in the leech head ganglion.
    Brodfuehrer PD; Parker HJ; Burns A; Berg M
    J Neurophysiol; 1995 Mar; 73(3):983-92. PubMed ID: 7608783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual-component amino-acid-mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos.
    Dale N; Roberts A
    J Physiol; 1985 Jun; 363():35-59. PubMed ID: 2862278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical and electrical synaptic connexions between cutaneous mechanoreceptor neurones in the central nervous system of the leech.
    Baylor DA; Nicholls JG
    J Physiol; 1969 Aug; 203(3):591-609. PubMed ID: 4319015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions between pathways controlling posture and gait at the level of spinal interneurones in the cat.
    Jankowska E; Edgley S
    Prog Brain Res; 1993; 97():161-71. PubMed ID: 8234742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interneurones in the Xenopus embryo spinal cord: sensory excitation and activity during swimming.
    Clarke JD; Roberts A
    J Physiol; 1984 Sep; 354():345-62. PubMed ID: 6481637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interneurones of the supratrigeminal area mediating reflex inhibition of trigeminal and facial motorneurones in the rat.
    Minkels RF; Jüch PJ; van Willigen JD
    Arch Oral Biol; 1995 Apr; 40(4):275-84. PubMed ID: 7605254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intersegmental coordination of leech swimming: comparison of in situ and isolated nerve cord activity with body wall movement.
    Pearce RA; Friesen WO
    Brain Res; 1984 May; 299(2):363-6. PubMed ID: 6733455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A cephalic projection neuron involved in locomotion is dye coupled to the dopaminergic neural network in the medicinal leech.
    Crisp KM; Mesce KA
    J Exp Biol; 2004 Dec; 207(Pt 26):4535-42. PubMed ID: 15579549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graded synaptic transmission between local interneurones and motor neurones in the metathoracic ganglion of the locust.
    Burrows M; Siegler MV
    J Physiol; 1978 Dec; 285():231-55. PubMed ID: 217985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The brain matters: effects of descending signals on motor control.
    Mullins OJ; Friesen WO
    J Neurophysiol; 2012 May; 107(10):2730-41. PubMed ID: 22378172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using a model to assess the role of the spatiotemporal pattern of inhibitory input and intrasegmental electrical coupling in the intersegmental and side-to-side coordination of motor neurons by the leech heartbeat central pattern generator.
    García PS; Wright TM; Cunningham IR; Calabrese RL
    J Neurophysiol; 2008 Sep; 100(3):1354-71. PubMed ID: 18579654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.