These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 7021151)
1. The elongation factor Tu . guanosine tetraphosphate complex. Pingoud A; Block W Eur J Biochem; 1981 Jun; 116(3):631-4. PubMed ID: 7021151 [TBL] [Abstract][Full Text] [Related]
2. X-ray determination of the GDP-binding site of Escherichia coli elongation factor Tu by substitution with ppGpp. Suck D; Kabsch W FEBS Lett; 1981 Apr; 126(1):120-2. PubMed ID: 7016581 [No Abstract] [Full Text] [Related]
3. Elongation factor Tu.guanosine 3'-diphosphate 5'-diphosphate complex increases the fidelity of proofreading in protein biosynthesis: mechanism for reducing translational errors introduced by amino acid starvation. Dix DB; Thompson RC Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2027-31. PubMed ID: 3515344 [TBL] [Abstract][Full Text] [Related]
4. The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP. Pingoud A; Block W; Wittinghofer A; Wolf H; Fischer E J Biol Chem; 1982 Oct; 257(19):11261-7. PubMed ID: 6749837 [TBL] [Abstract][Full Text] [Related]
5. The elongation factor Tu from Escherichia coli, aminoacyl-tRNA, and guanosine tetraphosphate form a ternary complex which is bound by programmed ribosomes. Pingoud A; Gast FU; Block W; Peters F J Biol Chem; 1983 Dec; 258(23):14200-5. PubMed ID: 6358217 [TBL] [Abstract][Full Text] [Related]
6. Interaction of Escherichia coli EF-Tu.GTP and EF-Tu.GDP with analogues of the 3' terminus of aminoacyl-tRNA. Jonák J; Smrt J; Holý A; Rychlík I Eur J Biochem; 1980 Apr; 105(2):315-20. PubMed ID: 6991255 [No Abstract] [Full Text] [Related]
7. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study. Dell VA; Miller DL; Johnson AE Biochemistry; 1990 Feb; 29(7):1757-63. PubMed ID: 2110000 [TBL] [Abstract][Full Text] [Related]
8. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA. Navratil T; Spremulli LL Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005 [TBL] [Abstract][Full Text] [Related]
9. Reactivity of essential histidine residues in EF-Tu.GDP and EF-Tu.GTP from Escherichia coli. Jonák J; Rychlík I Biochim Biophys Acta; 1987 Jan; 908(1):97-102. PubMed ID: 3542047 [TBL] [Abstract][Full Text] [Related]
10. Kinetic studies on the interactions of Escherichia coli K12 elongation factor Tu with GDP and elongation factor Ts. Chau V; Romero G; Biltonen RL J Biol Chem; 1981 Jun; 256(11):5591-6. PubMed ID: 7016856 [TBL] [Abstract][Full Text] [Related]
11. Interaction of animal mitochondrial EF-Tu.EF-Ts with aminoacyl-tRNA, guanine nucleotides, and ribosomes. Schwartzbach CJ; Spremulli LL J Biol Chem; 1991 Sep; 266(25):16324-30. PubMed ID: 1885567 [TBL] [Abstract][Full Text] [Related]
12. Studies on stringent control in a cell-free system. Regulation by guanosine-5'-diphosphate-3'-diphosphate of the synthesis of elongation factor Tu. Shibuya M; Kaziro Y J Biochem; 1979 Aug; 86(2):403-11. PubMed ID: 158010 [TBL] [Abstract][Full Text] [Related]
13. Modification of elongation-factor-Tu . guanine-nucleotide interaction by kirromycin. A comparison with the effect of aminoacyl-tRNA and elongation factor Ts. Fasano O; Bruns W; Crechet JB; Sander G; Parmeggiani A Eur J Biochem; 1978 Sep; 89(2):557-65. PubMed ID: 251130 [No Abstract] [Full Text] [Related]
14. The identification and analysis of nucleotides bound to the elongation factor Tu from Escherichia coli. Block W; Pingoud A Anal Biochem; 1981 Jun; 114(1):112-7. PubMed ID: 7197127 [No Abstract] [Full Text] [Related]
15. Structural features of the GDP binding site of elongation factor Tu from Escherichia coli as determined by x-ray diffraction. Rubin JR; Morikawa K; Nyborg J; la Cour TF; Clark BF; Miller DL FEBS Lett; 1981 Jun; 129(1):177-9. PubMed ID: 7023989 [No Abstract] [Full Text] [Related]
16. ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis. Rojas AM; Ehrenberg M; Andersson SG; Kurland CG Mol Gen Genet; 1984; 197(1):36-45. PubMed ID: 6392824 [TBL] [Abstract][Full Text] [Related]
17. Effects of antibiotics, N-acetylaminoacyl-tRNA and other agents on the elongation-factor-Tu dependent and ribosome-dependent GTP hydrolysis promoted by 2'(3')-O-L-phenylalanyladenosine. Campuzano S; Modolell J Eur J Biochem; 1981 Jun; 117(1):27-31. PubMed ID: 6114863 [TBL] [Abstract][Full Text] [Related]
18. Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA. Wolf H; Assmann D; Fischer E Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5324-8. PubMed ID: 364475 [TBL] [Abstract][Full Text] [Related]
19. Effects of domain exchanges between Escherichia coli and mammalian mitochondrial EF-Tu on interactions with guanine nucleotides, aminoacyl-tRNA and ribosomes. Bullard JM; Cai YC; Zhang Y; Spremulli LL Biochim Biophys Acta; 1999 Jul; 1446(1-2):102-14. PubMed ID: 10395923 [TBL] [Abstract][Full Text] [Related]
20. Elongation factor Tu ternary complex binds to small ribosomal subunits in a functionally active state. Langer JA; Jurnak F; Lake JA Biochemistry; 1984 Dec; 23(25):6171-8. PubMed ID: 6395891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]