These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 7021525)
1. Selective inhibition of carbohydrate transport by the local anesthetic procaine in Escherichia coli. Granett S; Villarejo M J Bacteriol; 1981 Aug; 147(2):289-96. PubMed ID: 7021525 [TBL] [Abstract][Full Text] [Related]
2. Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems. Hengge R; Boos W Biochim Biophys Acta; 1983 Aug; 737(3-4):443-78. PubMed ID: 6349688 [No Abstract] [Full Text] [Related]
3. A change of threonine 266 to isoleucine in the lac permease of Escherichia coli diminishes the transport of lactose and increases the transport of maltose. Markgraf M; Bocklage H; Müller-Hill B Mol Gen Genet; 1985; 198(3):473-5. PubMed ID: 3892229 [TBL] [Abstract][Full Text] [Related]
4. Isolation and nucleotide sequencing of lactose carrier mutants that transport maltose. Brooker RJ; Wilson TH Proc Natl Acad Sci U S A; 1985 Jun; 82(12):3959-63. PubMed ID: 3889919 [TBL] [Abstract][Full Text] [Related]
5. Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. Bogdanov M; Dowhan W J Biol Chem; 1995 Jan; 270(2):732-9. PubMed ID: 7822303 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of thiodigalactoside-resistant mutants of the lactose permease which possess an enhanced recognition for maltose. Franco PJ; Eelkema JA; Brooker RJ J Biol Chem; 1989 Sep; 264(27):15988-92. PubMed ID: 2674122 [TBL] [Abstract][Full Text] [Related]
7. Salt tolerance of lactose-grown Vibrio parahaemolyticus carrying Escherichia coli lac genes. Datta AR; MacQuillan AM Appl Environ Microbiol; 1987 Feb; 53(2):466-9. PubMed ID: 3105458 [TBL] [Abstract][Full Text] [Related]
8. Membrane assembly of lactose permease of Escherichia coli. Yamato I J Biochem; 1992 Apr; 111(4):444-50. PubMed ID: 1618733 [TBL] [Abstract][Full Text] [Related]
9. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium. Saier MH; Novotny MJ; Comeau-Fuhrman D; Osumi T; Desai JD J Bacteriol; 1983 Sep; 155(3):1351-7. PubMed ID: 6350268 [TBL] [Abstract][Full Text] [Related]
10. Studies on beta-galactoside transport in a Proteus mirabilis merodiploid carrying an Escherichia coli lactose operon. Stubbs J; Horwitz A; Moses V J Bacteriol; 1973 Oct; 116(1):131-40. PubMed ID: 4583204 [TBL] [Abstract][Full Text] [Related]
11. [Mechanisms of efflux of a substrate accumulated by the lactose permease of Escherichia coli: theoretical and experimental study]. Kepes F Biochimie; 1985 Jan; 67(1):69-73. PubMed ID: 3888293 [TBL] [Abstract][Full Text] [Related]
12. Isolation, characterization, and nucleotide sequences of lactose permease mutants that have acquired the ability to transport maltose. Brooker RJ; Wilson TH Ann N Y Acad Sci; 1985; 456():350. PubMed ID: 3911842 [No Abstract] [Full Text] [Related]
13. Circumstantial evidence for cytochrome b1 involvement in the functioning of lac-permease in respiring Escherichia coli. Yariv J J Theor Biol; 1996 Oct; 182(4):459-62. PubMed ID: 8944892 [TBL] [Abstract][Full Text] [Related]
14. The lac carrier protein in Escherichia coli. Kaback HR J Membr Biol; 1983; 76(2):95-112. PubMed ID: 6358502 [No Abstract] [Full Text] [Related]
15. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system. Saier MH; Straud H; Massman LS; Judice JJ; Newman MJ; Feucht BU J Bacteriol; 1978 Mar; 133(3):1358-67. PubMed ID: 346569 [TBL] [Abstract][Full Text] [Related]
16. Active transport in Escherichia coli: passage to permease. Kaback HR Annu Rev Biophys Biophys Chem; 1986; 15():279-319. PubMed ID: 3521656 [No Abstract] [Full Text] [Related]
17. Possible mechanisms underlying the slow lactose fermentation phenotype in Shigella spp. Ito H; Kido N; Arakawa Y; Ohta M; Sugiyama T; Kato N Appl Environ Microbiol; 1991 Oct; 57(10):2912-7. PubMed ID: 1746953 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of lactose permease mutants with an enhanced recognition of maltose and diminished recognition of cellobiose. Collins JC; Permuth SF; Brooker RJ J Biol Chem; 1989 Sep; 264(25):14698-703. PubMed ID: 2670925 [TBL] [Abstract][Full Text] [Related]
19. Studies on the utilization of lactose by Corynebacterium glutamicum, bearing the lactose operon of Escherichia coli. Brabetz W; Liebl W; Schleifer KH Arch Microbiol; 1991; 155(6):607-12. PubMed ID: 1953301 [TBL] [Abstract][Full Text] [Related]
20. A possible role for the active-site thiol in lactose transport in Escherichia coli. West IC Biochem Soc Trans; 1980 Dec; 8(6):706-7. PubMed ID: 6780387 [No Abstract] [Full Text] [Related] [Next] [New Search]