These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 702195)

  • 1. Crayfish antennal neuropil. II. Periodic bursting elicited by sensory stimulation and extrinsic current in interneurons.
    Glantz RM
    J Neurophysiol; 1978 Sep; 41(5):1314-27. PubMed ID: 702195
    [No Abstract]   [Full Text] [Related]  

  • 2. Crayfish antennal neuropil. I. Reciprocal synaptic interactions and input-output characteristics of first-order interneurons.
    Glantz RM
    J Neurophysiol; 1978 Sep; 41(5):1297-1313. PubMed ID: 212539
    [No Abstract]   [Full Text] [Related]  

  • 3. Interneurons in the tritocerebrum of the crayfish.
    Tautz J
    Brain Res; 1987 Mar; 407(2):230-9. PubMed ID: 3567643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of mechanosensory interneurons in the crayfish. I. Presynaptic inhibition from giant fibers.
    Kennedy D; McVittie J; Calabrese R; Fricke RA; Craelius W; Chiapella P
    J Neurophysiol; 1980 Jun; 43(6):1495-509. PubMed ID: 6251177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central inhibition of an identified mechanosensory interneuron in the crayfish.
    Wilkens LA; Marzelli GA
    J Neurobiol; 1979 May; 10(3):247-54. PubMed ID: 458437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crayfish escape behavior and central synapses. I. Neural circuit exciting lateral giant fiber.
    Zucker RS
    J Neurophysiol; 1972 Sep; 35(5):599-620. PubMed ID: 5054506
    [No Abstract]   [Full Text] [Related]  

  • 7. Sensory interneurons: some observations concerning the physiology and related structural significance of two cells in the crayfish brain.
    Wilkens LA; Larimer JL
    Tissue Cell; 1973; 5(3):393-400. PubMed ID: 4744678
    [No Abstract]   [Full Text] [Related]  

  • 8. Non-spiking interactions and local interneurones in the central pattern generator of the crayfish swimmeret system.
    Heitler WJ; Pearson KG
    Brain Res; 1980 Apr; 187(1):206-11. PubMed ID: 7357468
    [No Abstract]   [Full Text] [Related]  

  • 9. Presynaptic inhibition: primary afferent depolarization in crayfish neurons.
    Kennedy D; Calabrese RL; Wine JJ
    Science; 1974 Nov; 186(4162):451-4. PubMed ID: 4370280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and initial characterization of a cluster of command and pattern-generating neurons underlying respiratory pumping in Aplysia californica.
    Byrne JH
    J Neurophysiol; 1983 Feb; 49(2):491-508. PubMed ID: 6300346
    [No Abstract]   [Full Text] [Related]  

  • 11. Frequency coding of waterborne vibrations by abdominal mechanosensory interneurons in the crayfish, Procambarus clarkii.
    Plummer MR; Tautz J; Wine JJ
    J Comp Physiol A; 1986 Jun; 158(6):751-64. PubMed ID: 3735163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crayfish escape behavior and central synapses. II. Physiological mechanisms underlying behavioral habituation.
    Zucker RS
    J Neurophysiol; 1972 Sep; 35(5):621-37. PubMed ID: 5054507
    [No Abstract]   [Full Text] [Related]  

  • 13. Primary afferent depolarizations of sensory origin within contact-sensitive mechanoreceptive afferents of a crayfish leg.
    Marchand AR; Barnes WJ; Cattaert D
    J Neurophysiol; 1997 Jun; 77(6):3340-54. PubMed ID: 9212279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons.
    Burrows M; Newland PL
    J Comp Neurol; 1993 Mar; 329(3):412-26. PubMed ID: 8459052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposing parallel connections through crayfish local nonspiking interneurons.
    Nagayama T; Hisada M
    J Comp Neurol; 1987 Mar; 257(3):347-58. PubMed ID: 3558893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and morphological characterization of anaxonic non-spiking interneurons in the crayfish motor control system.
    Takahata M; Nagayama T; Hisada M
    Brain Res; 1981 Dec; 226(1-2):309-14. PubMed ID: 7296293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presynaptic inhibition in the crayfish CNS: pathways and synaptic mechanisms.
    Kirk MD
    J Neurophysiol; 1985 Nov; 54(5):1305-25. PubMed ID: 3001237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The onset of response habituation during the growth of the lateral giant neuron of crayfish.
    Edwards DH; Fricke RA; Barnett LD; Yeh SR; Leise EM
    J Neurophysiol; 1994 Aug; 72(2):890-8. PubMed ID: 7983544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in synaptic integration during the growth of the lateral giant neuron of crayfish.
    Edwards DH; Yeh SR; Barnett LD; Nagappan PR
    J Neurophysiol; 1994 Aug; 72(2):899-908. PubMed ID: 7983545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interneurons involved in mediation and modulation of gill-withdrawal reflex in Aplysia. III. Identified facilitating neurons increase Ca2+ current in sensory neurons.
    Hawkins RD
    J Neurophysiol; 1981 Feb; 45(2):327-39. PubMed ID: 6257864
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.