These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7023433)

  • 21. An in vitro comparison of capillary flow dialyzer performances on a single needle system (double headpump).
    Ringoir S; Piron M
    Int J Artif Organs; 1979 May; 2(3):125-31. PubMed ID: 468404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of convection on small molecule clearances in online hemodiafiltration.
    Ficheux A; Argilés A; Mion H; Mion CM
    Kidney Int; 2000 Apr; 57(4):1755-63. PubMed ID: 10760112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dialyzer ultrafiltration coefficients: comparison between in vitro and in vivo values.
    Keshaviah PR; Constantini EG; Luehmann DA; Shapiro FL
    Artif Organs; 1982 Feb; 6(1):23-6. PubMed ID: 7073518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. No evidence for endotoxin transfer across high flux polysulfone membranes.
    Bommer J; Becker KP; Urbaschek R; Ritz E; Urbaschek B
    Clin Nephrol; 1987 Jun; 27(6):278-82. PubMed ID: 3608251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-needle venous dialysis: a comparison of three systems.
    Weinstein AM; Frederick PM; Sullivan JF
    Uremia Invest; 1984-1985; 8(2):69-77. PubMed ID: 6537687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slow continuous ultrafiltration with bound solute dialysis.
    Patzer JF; Safta SA; Miller RH
    ASAIO J; 2006; 52(1):47-58. PubMed ID: 16436890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Influence of Colloid Osmotic Pressure on Hydrostatic Pressures in High- and Low-Flux Hemodialyzers.
    Schneditz D; Sarikakis G; Kontodima M; Sauseng N
    Artif Organs; 2018 May; 42(5):525-532. PubMed ID: 29341167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of four different short dialysis techniques.
    Ronco C; Fabris A; Chiaramonte S; De Dominicis E; Feriani M; Brendolan A; Bragantini L; Milan M; Dell'Aquila R; La Greca G
    Int J Artif Organs; 1988 May; 11(3):169-74. PubMed ID: 3403054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical evaluation of a pre-set ultrafiltration rate controller available for single pass and hemodiafiltration systems.
    Ota K; Suzuki T; Ozaku Y; Era K; Agishi T; Sugino N; Haraguchi M; Mitani N; Kumazawa S
    Artif Organs; 1978 May; 2(2):141-3. PubMed ID: 687169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mathematical and clinical investigation of the RP6-rhodial 75 system. Evaluation of high and low middle molecular clearance dialysis.
    Jørstad S; Widerøe TE; Smedby L; Berg KJ; Wicks K
    Scand J Urol Nephrol; 1978; 12(2):167-74. PubMed ID: 694443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dialysis membrane-dependent removal of middle molecules during hemodiafiltration: the beta2-microglobulin/albumin relationship.
    Ahrenholz PG; Winkler RE; Michelsen A; Lang DA; Bowry SK
    Clin Nephrol; 2004 Jul; 62(1):21-8. PubMed ID: 15267009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of blood-membrane interactions on solute clearance during hemodialysis.
    Langsdorf LJ; Krankel LG; Zydney AL
    ASAIO J; 1993; 39(3):M767-72. PubMed ID: 7505640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blood-dialysate equilibration during continuous arteriovenous hemodialysis.
    Pallone TL; Hyver S; Petersen J
    ASAIO Trans; 1988; 34(3):512-4. PubMed ID: 3196554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new operational principle for blood treatment with highly permeable membranes.
    Sigdell JE
    Int J Artif Organs; 1984 Jul; 7(4):193-6. PubMed ID: 6490190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical basis and experimental verification of the impact of ultrafiltration on dialyzer clearance.
    Waniewski J; Werynski A; Ahrenholz P; Lucjanek P; Judycki W; Esther G
    Artif Organs; 1991 Apr; 15(2):70-7. PubMed ID: 2036065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diffusive and convective transfer of cytokine-inducing bacterial products across hemodialysis membranes.
    Pereira BJ; Snodgrass BR; Hogan PJ; King AJ
    Kidney Int; 1995 Feb; 47(2):603-10. PubMed ID: 7723247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemodiafiltration: a new alternative to hemofiltration and conventional hemodialysis.
    Leber HW; Wizemann V; Goubeaud G; Rawer P; Schütterle G
    Artif Organs; 1978 May; 2(2):150-3. PubMed ID: 687172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High flux hemofiltration.
    Bosch JP; Geronemus R; Glabman S; Lysaght M; Kahn T; von Albertini B
    Artif Organs; 1978 Nov; 2(4):339-42. PubMed ID: 743001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetization influence on the performance of ferrosoferric oxide: polyacrylonitrile membranes in ultrafiltration of pig blood solution.
    Huang ZQ; Guo XP; Guo CL; Zhang Z
    Bioprocess Biosyst Eng; 2006 May; 28(6):415-21. PubMed ID: 16514522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-flux haemodialysis with 1.5 m2 modified cuprammonium rayon membrane: technical and clinical evaluation.
    Ronco C; Fabris A; Brendolan A; Feriani M; Chiaramonte S; Milan M; Dell'Aquila R; Biasioli S; Pisani E; La Greca G
    Nephrol Dial Transplant; 1988; 3(4):440-7. PubMed ID: 3140131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.