These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 7023551)
1. [Properties and role of tryptophan residues in the polypeptide chain of elongation factor G from E. coli]. Kashparov IA; Semisotnov GV; Alakhov IuB Biokhimiia; 1981 Aug; 46(8):1488-98. PubMed ID: 7023551 [TBL] [Abstract][Full Text] [Related]
2. The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain. Helgstrand M; Mandava CS; Mulder FA; Liljas A; Sanyal S; Akke M J Mol Biol; 2007 Jan; 365(2):468-79. PubMed ID: 17070545 [TBL] [Abstract][Full Text] [Related]
3. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Rodnina MV; Savelsbergh A; Katunin VI; Wintermeyer W Nature; 1997 Jan; 385(6611):37-41. PubMed ID: 8985244 [TBL] [Abstract][Full Text] [Related]
4. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome. Yu H; Chan YL; Wool IG J Mol Biol; 2009 Feb; 386(3):802-13. PubMed ID: 19154738 [TBL] [Abstract][Full Text] [Related]
5. An A to U transversion at position 1067 of 23 S rRNA from Escherichia coli impairs EF-Tu and EF-G function. Saarma U; Remme J; Ehrenberg M; Bilgin N J Mol Biol; 1997 Sep; 272(3):327-35. PubMed ID: 9325093 [TBL] [Abstract][Full Text] [Related]
6. Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations. Mesters JR; Potapov AP; de Graaf JM; Kraal B J Mol Biol; 1994 Oct; 242(5):644-54. PubMed ID: 7932721 [TBL] [Abstract][Full Text] [Related]
7. Kinetics and thermodynamics of RRF, EF-G, and thiostrepton interaction on the Escherichia coli ribosome. Seo HS; Kiel M; Pan D; Raj VS; Kaji A; Cooperman BS Biochemistry; 2004 Oct; 43(40):12728-40. PubMed ID: 15461445 [TBL] [Abstract][Full Text] [Related]
8. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA. Navratil T; Spremulli LL Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005 [TBL] [Abstract][Full Text] [Related]
9. Tyrosine residues in the C-terminal domain of the elongation factor G are essential for its interaction with the ribosome. Alakhov YB; Zalite IK; Kashparov IA Eur J Biochem; 1980 Apr; 105(3):531-8. PubMed ID: 6989608 [TBL] [Abstract][Full Text] [Related]
10. The role of cysteinyl residues in the activity of bacterial elongation factor Ts, a guanosine nucleotide dissociation protein. Hwang YW; Sanchez A; Hwang MC; Miller DL Arch Biochem Biophys; 1997 Dec; 348(1):157-62. PubMed ID: 9390186 [TBL] [Abstract][Full Text] [Related]
11. Purification and N-terminal sequence analysis of pea chloroplast protein synthesis factor EF-G. Akkaya MS; Welcsh PL; Wolfe MA; Duerr BK; Becktel WJ; Breitenberger CA Arch Biochem Biophys; 1994 Jan; 308(1):109-17. PubMed ID: 8311443 [TBL] [Abstract][Full Text] [Related]
12. Interactions of elongation factor EF-P with the Escherichia coli ribosome. Aoki H; Xu J; Emili A; Chosay JG; Golshani A; Ganoza MC FEBS J; 2008 Feb; 275(4):671-81. PubMed ID: 18201202 [TBL] [Abstract][Full Text] [Related]
13. Formation of a binary complex between elongation factor G and guanine nucleotides. Arai N; Arai K; Kaziro Y J Biochem; 1975 Jul; 78(1):243-6. PubMed ID: 1104601 [TBL] [Abstract][Full Text] [Related]
14. Role of domains 4 and 5 in elongation factor G functions on the ribosome. Savelsbergh A; Matassova NB; Rodnina MV; Wintermeyer W J Mol Biol; 2000 Jul; 300(4):951-61. PubMed ID: 10891280 [TBL] [Abstract][Full Text] [Related]
15. Control of phosphate release from elongation factor G by ribosomal protein L7/12. Savelsbergh A; Mohr D; Kothe U; Wintermeyer W; Rodnina MV EMBO J; 2005 Dec; 24(24):4316-23. PubMed ID: 16292341 [TBL] [Abstract][Full Text] [Related]
16. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity. Hunter SE; Spremulli LL Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329 [TBL] [Abstract][Full Text] [Related]
17. The function of conserved amino acid residues adjacent to the effector domain in elongation factor G. Sharer JD; Koosha H; Church WB; March PE Proteins; 1999 Nov; 37(2):293-302. PubMed ID: 10584074 [TBL] [Abstract][Full Text] [Related]
18. Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome. Cameron DM; Thompson J; March PE; Dahlberg AE J Mol Biol; 2002 May; 319(1):27-35. PubMed ID: 12051934 [TBL] [Abstract][Full Text] [Related]
19. [Primary structure of the elongation factor G from Escherichia coli. V. Amino acid sequence of the C-terminal domain]. Alakhov IuB; Vinokurov LM; Dovgas NV; Motuz LP Bioorg Khim; 1983 Mar; 9(3):293-303. PubMed ID: 6385996 [TBL] [Abstract][Full Text] [Related]
20. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]