These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 7023689)
1. Morphometric parameters of the midgut cells of Aedes aegypti L. (Insecta, Diptera) under various conditions. Hecker H; Rudin W Cell Tissue Res; 1981; 219(3):619-27. PubMed ID: 7023689 [TBL] [Abstract][Full Text] [Related]
2. Normal versus alpha-amanitin induced cellular dynamics of the midgut epithelium in female Aedes aegypti L. (Insecta, Diptera) in response to blood feeding. Hecker H; Rudin W Eur J Cell Biol; 1979 Jun; 19(2):160-7. PubMed ID: 467461 [TBL] [Abstract][Full Text] [Related]
3. Morphometric comparison of the midgut epithelial cells in male and female Aedes aegypti L. (Insecta, Diptera). Rudin W; Hecker H Tissue Cell; 1976; 8(3):459-70. PubMed ID: 185746 [TBL] [Abstract][Full Text] [Related]
4. Ultrastructural changes in midgut cells of female Aedes aegypti L. (Insecta, Diptera) after starvation or sugar diet. Bauer P; Rudin W; Hecker H Cell Tissue Res; 1977 Feb; 177(2):215-9. PubMed ID: 837408 [TBL] [Abstract][Full Text] [Related]
5. Functional morphology of the midgut of Aedes aegypti L. (Insecta, Diptera) during blood digestion. Rudin W; Hecker H Cell Tissue Res; 1979 Aug; 200(2):193-203. PubMed ID: 487393 [TBL] [Abstract][Full Text] [Related]
6. Morphometric differences in midgut epithelial cells between strains of female Aedes aegypti (L.) (Insecta, Diptera). Hecker H; Brun R Cell Tissue Res; 1975 May; 159(1):91-9. PubMed ID: 1149093 [TBL] [Abstract][Full Text] [Related]
7. The role of the mosquito peritrophic membrane in bloodmeal digestion and infectivity of Plasmodium species. Billingsley PF; Rudin W J Parasitol; 1992 Jun; 78(3):430-40. PubMed ID: 1597785 [TBL] [Abstract][Full Text] [Related]
8. Peritrophic membranes and protease activity in the midgut of the malaria mosquito, Anopheles stephensi (Liston) (Insecta: Diptera) under normal and experimental conditions. Berner R; Rudin W; Hecker H J Ultrastruct Res; 1983 May; 83(2):195-204. PubMed ID: 6345801 [TBL] [Abstract][Full Text] [Related]
9. Morphometric analysis of the midgut of female Aedes aegypti (L.) (Insecta, Diptera) under various physiological conditions. Hecker H; Brun R; Reinhardt C; Burri PH Cell Tissue Res; 1974; 152(1):31-49. PubMed ID: 4374306 [No Abstract] [Full Text] [Related]
10. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for DEN2-43 and New Guinea C virus strains of dengue 2 virus. Guo XX; Zhu XJ; Li CX; Dong YD; Zhang YM; Xing D; Xue RD; Qin CF; Zhao TY Acta Trop; 2013 Dec; 128(3):566-70. PubMed ID: 23962388 [TBL] [Abstract][Full Text] [Related]
11. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Muthukumaran U; Govindarajan M; Rajeswary M Parasitol Res; 2015 Mar; 114(3):989-99. PubMed ID: 25544703 [TBL] [Abstract][Full Text] [Related]
12. Ultrastructural differentiation of the midgut epithelium in female Aedes aegypti (L.) (Insecta, Diptera) imagines. Hecker H; Freyvogel TA; Briegel H; Steiger R Acta Trop; 1971; 28(2):80-104. PubMed ID: 4400554 [No Abstract] [Full Text] [Related]
13. Histochemical and ultrastructural studies of the mosquito Aedes aegypti fat body: effects of aging and diet type. Martins GF; Serrão JE; Ramalho-Ortigão JM; Pimenta PF Microsc Res Tech; 2011 Nov; 74(11):1032-9. PubMed ID: 21509905 [TBL] [Abstract][Full Text] [Related]
14. A simple and affordable membrane-feeding method for Aedes aegpyti and Anopheles minimus (Diptera: Culicidae). Finlayson C; Saingamsook J; Somboon P Acta Trop; 2015 Dec; 152():245-251. PubMed ID: 26440474 [TBL] [Abstract][Full Text] [Related]
15. The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape. Dong S; Behura SK; Franz AWE BMC Genomics; 2017 May; 18(1):382. PubMed ID: 28506207 [TBL] [Abstract][Full Text] [Related]
16. Protection against mosquito vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus using a novel insect repellent, ethyl anthranilate. Islam J; Zaman K; Tyagi V; Duarah S; Dhiman S; Chattopadhyay P Acta Trop; 2017 Oct; 174():56-63. PubMed ID: 28666890 [TBL] [Abstract][Full Text] [Related]
17. Alpha-COPI coatomer protein is required for rough endoplasmic reticulum whorl formation in mosquito midgut epithelial cells. Zhou G; Isoe J; Day WA; Miesfeld RL PLoS One; 2011 Mar; 6(3):e18150. PubMed ID: 21483820 [TBL] [Abstract][Full Text] [Related]
18. Mosquito trypsin: immunocytochemical localization in the midgut of blood-fed Aedes aegypti (L.). Graf R; Raikhel AS; Brown MR; Lea AO; Briegel H Cell Tissue Res; 1986; 245(1):19-27. PubMed ID: 3524850 [TBL] [Abstract][Full Text] [Related]
19. Utilization of human blood and sugar as nutrients by female Aedes aegypti (Diptera: Culicidae). Naksathit AT; Edman JD; Scott SW J Med Entomol; 1999 Jan; 36(1):13-7. PubMed ID: 10071487 [TBL] [Abstract][Full Text] [Related]
20. Effect of mosquito midgut trypsin activity on dengue-2 virus infection and dissemination in Aedes aegypti. Molina-Cruz A; Gupta L; Richardson J; Bennett K; Black W; Barillas-Mury C Am J Trop Med Hyg; 2005 May; 72(5):631-7. PubMed ID: 15891140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]