BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7023696)

  • 1. Differential translation efficiency explains discoordinate expression of the galactose operon.
    Queen C; Rosenberg M
    Cell; 1981 Jul; 25(1):241-9. PubMed ID: 7023696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translation of galE and coordination of galactose operon expression in Escherichia coli: effects of insertions and deletions in the non-translated leader sequence.
    Bingham AH; Busby SJ
    Mol Microbiol; 1987 Jul; 1(1):117-24. PubMed ID: 2838723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and expression of the Klebsiella pneumoniae galactose operon.
    Peng HL; Fu TF; Liu SF; Chang HY
    J Biochem; 1992 Nov; 112(5):604-8. PubMed ID: 1478918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression and purification of the galactose operon enzymes from Escherichia coli.
    Vorgias CE; Lemaire HG; Wilson KS
    Protein Expr Purif; 1991; 2(5-6):330-8. PubMed ID: 1821806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The gal genes for the Leloir pathway of Lactobacillus casei 64H.
    Bettenbrock K; Alpert CA
    Appl Environ Microbiol; 1998 Jun; 64(6):2013-9. PubMed ID: 9603808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escherichia coli gal operon proteins made after prophage lambda induction.
    Merril CR; Gottesman ME; Adhya SL
    J Bacteriol; 1981 Sep; 147(3):875-87. PubMed ID: 6268612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: organization, sequence, transcription, and activity of the gal gene products.
    Vaillancourt K; Moineau S; Frenette M; Lessard C; Vadeboncoeur C
    J Bacteriol; 2002 Feb; 184(3):785-93. PubMed ID: 11790749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic-AMP-dependent switch in initiation of transcription from the two promoters of the Escherichia coli gal operon: identification and assay of 5'-triphosphate ends of mRNA by GTP:RNA guanyltransferase.
    Irani M; Musso R; Adhya S
    J Bacteriol; 1989 Mar; 171(3):1623-30. PubMed ID: 2537823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations that reduce expression from the P2 promoter of the Escherichia coli galactose operon.
    Bingham AH; Ponnambalam S; Chan B; Busby S
    Gene; 1986; 41(1):67-74. PubMed ID: 3516794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galactosamine is an inducer of Gal genes in Saccharomyces cerevisiae.
    Venkov PV; Chelibonova-Lorer H
    Hoppe Seylers Z Physiol Chem; 1980 Jan; 361(1):17-24. PubMed ID: 6244221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slippage synthesis at the galP2 promoter of Escherichia coli and its regulation by UTP concentration and cAMP.cAMP receptor protein.
    Jin DJ
    J Biol Chem; 1994 Jun; 269(25):17221-7. PubMed ID: 7516334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo transcription dynamics of the galactose operon: a study on the promoter transition from P1 to P2 at onset of stationary phase.
    Ji SC; Wang X; Yun SH; Jeon HJ; Lee HJ; Kim H; Lim HM
    PLoS One; 2011 Mar; 6(3):e17646. PubMed ID: 21445255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide sequences of the gal E gene and the gal T gene of E. coli.
    Lemaire HG; Müller-Hill B
    Nucleic Acids Res; 1986 Oct; 14(19):7705-11. PubMed ID: 3022232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segment-specific mutagenesis of the regulatory region in the Escherichia coli galactose operon: isolation of mutations reducing the initiation of transcription and translation.
    Busby S; Dreyfus M
    Gene; 1983; 21(1-2):121-31. PubMed ID: 6301942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and biochemical characterization of the galactose gene cluster in Kluyveromyces lactis.
    Riley MI; Dickson RC
    J Bacteriol; 1984 May; 158(2):705-12. PubMed ID: 6327619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of 2-deoxygalactose to Saccharomyces cerevisiae cells constitutively synthesizing galactose-metabolizing enzymes.
    Platt T
    Mol Cell Biol; 1984 May; 4(5):994-6. PubMed ID: 6328283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization, expression, and mutation of the Lactococcus lactis galPMKTE genes, involved in galactose utilization via the Leloir pathway.
    Grossiord BP; Luesink EJ; Vaughan EE; Arnaud A; de Vos WM
    J Bacteriol; 2003 Feb; 185(3):870-8. PubMed ID: 12533462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational coupling at an intercistronic boundary of the Escherichia coli galactose operon.
    Schümperli D; McKenney K; Sobieski DA; Rosenberg M
    Cell; 1982 Oct; 30(3):865-71. PubMed ID: 6754091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDPglucose 4-epimerase.
    Poolman B; Royer TJ; Mainzer SE; Schmidt BF
    J Bacteriol; 1990 Jul; 172(7):4037-47. PubMed ID: 1694527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site.
    Guarente L; Yocum RR; Gifford P
    Proc Natl Acad Sci U S A; 1982 Dec; 79(23):7410-4. PubMed ID: 6760197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.