BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 7023722)

  • 1. The induction of errors during in vitro DNA synthesis following chloroacetaldehyde-treatment of poly(dA-dT) and poly(dC-dG) templates.
    Hall JA; Saffhill R; Green T; Hathway DE
    Carcinogenesis; 1981; 2(2):141-6. PubMed ID: 7023722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The formation of acetylaminofluorene adducts in poly(dC-dG) and poly(dA-dT) on reaction with N-acetoxy-2-acetylaminofluorene and the effect of such modification upon the polymers as templates for DNA polymerases.
    Saffhill R; Abbott PJ
    Chem Biol Interact; 1983; 44(1-2):95-110. PubMed ID: 6342828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the miscoding properties of 1,N6-ethenoadenine and 3,N4-ethenocytosine, DNA reaction products of vinyl chloride metabolites, during in vitro DNA synthesis.
    Barbin A; Bartsch H; Leconte P; Radman M
    Nucleic Acids Res; 1981 Jan; 9(2):375-87. PubMed ID: 7010314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Misincorporation in DNA synthesis after modification of template or polymerase by MNNG, MMS and UV radiation.
    Miyaki M; Suzuki K; Aihara M; Ono T
    Mutat Res; 1983 Feb; 107(2):203-18. PubMed ID: 6346075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-synthesis with methylated poly(dA-dT) templates: possible role of O4-methylthymine as a pro-mutagenic base.
    Abbott PJ; Saffhill R
    Nucleic Acids Res; 1977 Mar; 4(3):761-9. PubMed ID: 325522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA synthesis with methylated poly(dC-dG) templates. Evidence for a competitive nature to miscoding by O(6)-methylguanine.
    Abbott PJ; Saffhill R
    Biochim Biophys Acta; 1979 Mar; 562(1):51-61. PubMed ID: 373805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of mutagenic efficiency of two carcinogen-modified nucleosides, 1,N6-ethenodeoxyadenosine and O4-methyldeoxythymidine, using polymerases of varying fidelity.
    Singer B; Abbott LG; Spengler SJ
    Carcinogenesis; 1984 Sep; 5(9):1165-71. PubMed ID: 6205783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mnemonic aspects of Escherichia coli DNA polymerase I. Interaction with one template influences the next interaction with another template.
    Papanicolaou C; Lecomte P; Ninio J
    J Mol Biol; 1986 Jun; 189(3):435-48. PubMed ID: 3537308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of the fidelity of transcription of RNA polymerase I and II following N-hydroxy-2-acetylaminofluorene treatment.
    Glazer RI
    Nucleic Acids Res; 1978 Jul; 5(7):2607-16. PubMed ID: 353743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroacetaldehyde-treated ribo- and deoxyribopolynucleotides. 2. Errors in transcription by different polymerases resulting from ethenocytosine and its hydrated intermediate.
    Kuśmierek JT; Singer B
    Biochemistry; 1982 Oct; 21(22):5723-8. PubMed ID: 6756474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The incorporation of wrong bases by DNA polymerase I following gamma-irradiation of DNA-like templates.
    Saffhill R
    Biochim Biophys Acta; 1974 Apr; 349(1):23-31. PubMed ID: 11400434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction of chloroacetaldehyde with poly(dA-dT) and poly(dC-dG) and its effect upon the accuracy of DNA synthesis.
    Saffhill R; Hall JA
    IARC Sci Publ; 1986; (70):339-43. PubMed ID: 3793184
    [No Abstract]   [Full Text] [Related]  

  • 13. Uracil in deoxyribonucleotide polymers reduces their template-primer activity for E. coli DNA polymerase I.
    Vilpo JA; Ridell J
    Nucleic Acids Res; 1983 Jun; 11(11):3753-65. PubMed ID: 6344014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. D(M6ATP) as a probe of the fidelity of base incorporation into polynucleotides by Escherichia coli DNA polymerase I.
    Engel JD; von Hippel PH
    J Biol Chem; 1978 Feb; 253(3):935-9. PubMed ID: 340462
    [No Abstract]   [Full Text] [Related]  

  • 15. The binding of the antitumor antibiotic chartreusin to poly(dA-dT).poly(dA-dT), poly(dG-dC).poly(dG-dC), calf thymus DNA, transfer RNA, and ribosomal RNA.
    Krueger WC; Pschigoda LM; Moscowitz A
    J Antibiot (Tokyo); 1986 Sep; 39(9):1298-303. PubMed ID: 3781929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multispectroscopic methods reveal different modes of interaction of anti cancer drug mitoxantrone with Poly(dG-dC).Poly(dG-dC) and Poly(dA-dT).Poly(dA-dT).
    Awasthi P; Dogra S; Barthwal R
    J Photochem Photobiol B; 2013 Oct; 127():78-87. PubMed ID: 23968995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of mutagenesis by the vinyl chloride metabolite chloroacetaldehyde. Effect of gene-targeted in vitro adduction of M13 DNA on DNA template activity in vivo and in vitro.
    Jacobsen JS; Humayun MZ
    Biochemistry; 1990 Jan; 29(2):496-504. PubMed ID: 2405905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli polymerase I can use O2-methyldeoxythymidine or O4-methyldeoxythymidine in place of deoxythymidine in primed poly(dA-dT).poly(dA-dT) synthesis.
    Singer B; Sági J; Kuśmierek JT
    Proc Natl Acad Sci U S A; 1983 Aug; 80(16):4884-8. PubMed ID: 6348776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of interstrand cross-links in chloroacetaldehyde-treated DNA demonstrated by ethidium bromide fluorescence.
    Spengler SJ; Singer B
    Cancer Res; 1988 Sep; 48(17):4804-6. PubMed ID: 3409221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational peculiarities of polynucleotides with a nonrandom base sequence according to the 1H----3H exchange rate in C8H groups of purinic residues.
    Lesnik EA; Maslova RN; Agranovich IM; Varshavsky YaM
    J Biomol Struct Dyn; 1987 Dec; 5(3):601-14. PubMed ID: 3271486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.