These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 7023722)
1. The induction of errors during in vitro DNA synthesis following chloroacetaldehyde-treatment of poly(dA-dT) and poly(dC-dG) templates. Hall JA; Saffhill R; Green T; Hathway DE Carcinogenesis; 1981; 2(2):141-6. PubMed ID: 7023722 [TBL] [Abstract][Full Text] [Related]
2. The formation of acetylaminofluorene adducts in poly(dC-dG) and poly(dA-dT) on reaction with N-acetoxy-2-acetylaminofluorene and the effect of such modification upon the polymers as templates for DNA polymerases. Saffhill R; Abbott PJ Chem Biol Interact; 1983; 44(1-2):95-110. PubMed ID: 6342828 [TBL] [Abstract][Full Text] [Related]
3. Studies on the miscoding properties of 1,N6-ethenoadenine and 3,N4-ethenocytosine, DNA reaction products of vinyl chloride metabolites, during in vitro DNA synthesis. Barbin A; Bartsch H; Leconte P; Radman M Nucleic Acids Res; 1981 Jan; 9(2):375-87. PubMed ID: 7010314 [TBL] [Abstract][Full Text] [Related]
4. Misincorporation in DNA synthesis after modification of template or polymerase by MNNG, MMS and UV radiation. Miyaki M; Suzuki K; Aihara M; Ono T Mutat Res; 1983 Feb; 107(2):203-18. PubMed ID: 6346075 [TBL] [Abstract][Full Text] [Related]
5. DNA-synthesis with methylated poly(dA-dT) templates: possible role of O4-methylthymine as a pro-mutagenic base. Abbott PJ; Saffhill R Nucleic Acids Res; 1977 Mar; 4(3):761-9. PubMed ID: 325522 [TBL] [Abstract][Full Text] [Related]
6. DNA synthesis with methylated poly(dC-dG) templates. Evidence for a competitive nature to miscoding by O(6)-methylguanine. Abbott PJ; Saffhill R Biochim Biophys Acta; 1979 Mar; 562(1):51-61. PubMed ID: 373805 [TBL] [Abstract][Full Text] [Related]
7. Assessment of mutagenic efficiency of two carcinogen-modified nucleosides, 1,N6-ethenodeoxyadenosine and O4-methyldeoxythymidine, using polymerases of varying fidelity. Singer B; Abbott LG; Spengler SJ Carcinogenesis; 1984 Sep; 5(9):1165-71. PubMed ID: 6205783 [TBL] [Abstract][Full Text] [Related]
8. Mnemonic aspects of Escherichia coli DNA polymerase I. Interaction with one template influences the next interaction with another template. Papanicolaou C; Lecomte P; Ninio J J Mol Biol; 1986 Jun; 189(3):435-48. PubMed ID: 3537308 [TBL] [Abstract][Full Text] [Related]
9. Comparisons of the fidelity of transcription of RNA polymerase I and II following N-hydroxy-2-acetylaminofluorene treatment. Glazer RI Nucleic Acids Res; 1978 Jul; 5(7):2607-16. PubMed ID: 353743 [TBL] [Abstract][Full Text] [Related]
10. Chloroacetaldehyde-treated ribo- and deoxyribopolynucleotides. 2. Errors in transcription by different polymerases resulting from ethenocytosine and its hydrated intermediate. Kuśmierek JT; Singer B Biochemistry; 1982 Oct; 21(22):5723-8. PubMed ID: 6756474 [TBL] [Abstract][Full Text] [Related]
11. The incorporation of wrong bases by DNA polymerase I following gamma-irradiation of DNA-like templates. Saffhill R Biochim Biophys Acta; 1974 Apr; 349(1):23-31. PubMed ID: 11400434 [TBL] [Abstract][Full Text] [Related]
12. Reaction of chloroacetaldehyde with poly(dA-dT) and poly(dC-dG) and its effect upon the accuracy of DNA synthesis. Saffhill R; Hall JA IARC Sci Publ; 1986; (70):339-43. PubMed ID: 3793184 [No Abstract] [Full Text] [Related]
13. Uracil in deoxyribonucleotide polymers reduces their template-primer activity for E. coli DNA polymerase I. Vilpo JA; Ridell J Nucleic Acids Res; 1983 Jun; 11(11):3753-65. PubMed ID: 6344014 [TBL] [Abstract][Full Text] [Related]
14. D(M6ATP) as a probe of the fidelity of base incorporation into polynucleotides by Escherichia coli DNA polymerase I. Engel JD; von Hippel PH J Biol Chem; 1978 Feb; 253(3):935-9. PubMed ID: 340462 [No Abstract] [Full Text] [Related]
15. The binding of the antitumor antibiotic chartreusin to poly(dA-dT).poly(dA-dT), poly(dG-dC).poly(dG-dC), calf thymus DNA, transfer RNA, and ribosomal RNA. Krueger WC; Pschigoda LM; Moscowitz A J Antibiot (Tokyo); 1986 Sep; 39(9):1298-303. PubMed ID: 3781929 [TBL] [Abstract][Full Text] [Related]
16. Multispectroscopic methods reveal different modes of interaction of anti cancer drug mitoxantrone with Poly(dG-dC).Poly(dG-dC) and Poly(dA-dT).Poly(dA-dT). Awasthi P; Dogra S; Barthwal R J Photochem Photobiol B; 2013 Oct; 127():78-87. PubMed ID: 23968995 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of mutagenesis by the vinyl chloride metabolite chloroacetaldehyde. Effect of gene-targeted in vitro adduction of M13 DNA on DNA template activity in vivo and in vitro. Jacobsen JS; Humayun MZ Biochemistry; 1990 Jan; 29(2):496-504. PubMed ID: 2405905 [TBL] [Abstract][Full Text] [Related]
18. Escherichia coli polymerase I can use O2-methyldeoxythymidine or O4-methyldeoxythymidine in place of deoxythymidine in primed poly(dA-dT).poly(dA-dT) synthesis. Singer B; Sági J; Kuśmierek JT Proc Natl Acad Sci U S A; 1983 Aug; 80(16):4884-8. PubMed ID: 6348776 [TBL] [Abstract][Full Text] [Related]
19. Formation of interstrand cross-links in chloroacetaldehyde-treated DNA demonstrated by ethidium bromide fluorescence. Spengler SJ; Singer B Cancer Res; 1988 Sep; 48(17):4804-6. PubMed ID: 3409221 [TBL] [Abstract][Full Text] [Related]
20. Conformational peculiarities of polynucleotides with a nonrandom base sequence according to the 1H----3H exchange rate in C8H groups of purinic residues. Lesnik EA; Maslova RN; Agranovich IM; Varshavsky YaM J Biomol Struct Dyn; 1987 Dec; 5(3):601-14. PubMed ID: 3271486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]