These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7024105)

  • 1. Inhibition of aminoacylation of formylmethionine tRNA of E. coli by deoxyribooligonucleotides complementary to the anticodon loop.
    Jayaraman K; Deobagkar DN; Jacob TM
    Indian J Biochem Biophys; 1981 Feb; 18(1):7-10. PubMed ID: 7024105
    [No Abstract]   [Full Text] [Related]  

  • 2. Synthesis of deoxyribooligonucleotides complementary to the anticodon loop of formylmethionine tRNA of E. coli.
    Jayaraman K; Jacob TM
    Indian J Biochem Biophys; 1981 Feb; 18(1):1-6. PubMed ID: 7024104
    [No Abstract]   [Full Text] [Related]  

  • 3. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral-selective aminoacylation of an RNA minihelix.
    Tamura K; Schimmel P
    Science; 2004 Aug; 305(5688):1253. PubMed ID: 15333830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on deoxyribonucleic acids and related compounds. III. Synthesis of oligodeoxyribonucleotides complementary to the anticodon loop of Escherichia coli tRNAfmet by an improved triester method.
    Ohtsuka E; Shibahara S; Ikehara M
    Chem Pharm Bull (Tokyo); 1981 Dec; 29(12):3440-8. PubMed ID: 6176343
    [No Abstract]   [Full Text] [Related]  

  • 6. Replacement and insertion of nucleotides at the anticodon loop of E. coli tRNAMetf by ligation of chemically synthesized ribooligonucleotides.
    Doi T; Yamane A; Matsugi J; Ohtsuka E; Ikehara M
    Nucleic Acids Res; 1985 May; 13(10):3685-97. PubMed ID: 3892480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-base codon-mediated saturation mutagenesis in a cell-free translation system.
    Watanabe T; Muranaka N; Hohsaka T
    J Biosci Bioeng; 2008 Mar; 105(3):211-5. PubMed ID: 18397770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of the kinetic parameters for aminoacylation of Escherichia coli formylmethionine transfer RNA by modification of an anticodon base.
    Schulman LH; Pelka H
    J Biol Chem; 1977 Feb; 252(3):814-9. PubMed ID: 14133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aminoacylation of anticodon loop substituted yeast tyrosine transfer RNA.
    Bare L; Uhlenbeck OC
    Biochemistry; 1985 Apr; 24(9):2354-60. PubMed ID: 3846456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure.
    Motorin Y; Bec G; Tewari R; Grosjean H
    RNA; 1997 Jul; 3(7):721-33. PubMed ID: 9214656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary structure in formylmethionine tRNA influences the site-directed cleavage of ribonuclease H using chimeric 2'-O-methyl oligodeoxyribonucleotides.
    Hayase Y; Inoue H; Ohtsuka E
    Biochemistry; 1990 Sep; 29(37):8793-7. PubMed ID: 2176835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis reveals two independent molecular requirements during transfer RNA selection on the ribosome.
    Cochella L; Brunelle JL; Green R
    Nat Struct Mol Biol; 2007 Jan; 14(1):30-6. PubMed ID: 17159993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the CCA end of tRNA and its vicinity in aminoacylation.
    Tamura K; Hasegawa T
    Nucleic Acids Symp Ser; 1997; (37):133-4. PubMed ID: 9586035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translation initiation by using various N-acylaminoacyl tRNAs.
    Goto Y; Ashigai H; Sako Y; Murakami H; Suga H
    Nucleic Acids Symp Ser (Oxf); 2006; (50):293-4. PubMed ID: 17150933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticodon-anticodon interactions in solution. Studies of the self-association of yeast or Escherichia coli tRNAAsp and of their interactions with Escherichia coli tRNAVal.
    Romby P; Giegé R; Houssier C; Grosjean H
    J Mol Biol; 1985 Jul; 184(1):107-118. PubMed ID: 2411934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ chemical aminoacylation with amino acid thioesters linked to a peptide nucleic acid.
    Ninomiya K; Minohata T; Nishimura M; Sisido M
    J Am Chem Soc; 2004 Dec; 126(49):15984-9. PubMed ID: 15584731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. tRNA structure and ribosomal function. II. Interaction between anticodon helix and other tRNA mutations.
    Schultz DW; Yarus M
    J Mol Biol; 1994 Feb; 235(5):1395-405. PubMed ID: 8107081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two acidic residues of Escherichia coli methionyl-tRNA synthetase act as negative discriminants towards the binding of non-cognate tRNA anticodons.
    Schmitt E; Meinnel T; Panvert M; Mechulam Y; Blanquet S
    J Mol Biol; 1993 Oct; 233(4):615-28. PubMed ID: 8411169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation.
    Mayer C; Köhrer C; Kenny E; Prusko C; RajBhandary UL
    Biochemistry; 2003 May; 42(17):4787-99. PubMed ID: 12718519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.