These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 7024281)

  • 1. Biodegradation of a poly-(alpha-amino acid) hydrogel. II. In vitro.
    Dickinson HR; Hiltner A
    J Biomed Mater Res; 1981 Jul; 15(4):591-603. PubMed ID: 7024281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of a poly(alpha-amino acid) hydrogel. I. In vivo.
    Dickinson HR; Hiltner A; Gibbons DF; Anderson JM
    J Biomed Mater Res; 1981 Jul; 15(4):577-89. PubMed ID: 7276025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.
    Yang Z; Zhang Y; Markland P; Yang VC
    J Biomed Mater Res; 2002 Oct; 62(1):14-21. PubMed ID: 12124782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epitope tagging for tracking elastin-like polypeptides.
    Ong SR; Trabbic-Carlson KA; Nettles DL; Lim DW; Chilkoti A; Setton LA
    Biomaterials; 2006 Mar; 27(9):1930-5. PubMed ID: 16278015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel biodegradable polyphosphate cross-linker for making biocompatible hydrogel.
    Iwasaki Y; Nakagawa C; Ohtomi M; Ishihara K; Akiyoshi K
    Biomacromolecules; 2004; 5(3):1110-5. PubMed ID: 15132706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable water absorbent synthesized from bacterial poly(amino acid)s.
    Kunioka M
    Macromol Biosci; 2004 Mar; 4(3):324-9. PubMed ID: 15468223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanistic model for the enzymic degradation of synthetic biopolymers.
    Yaacobi Y; Sideman S; Lotan N
    Life Support Syst; 1985; 3(4):313-26. PubMed ID: 4068754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro assessment of the enzymatic degradation of several starch based biomaterials.
    Azevedo HS; Gama FM; Reis RL
    Biomacromolecules; 2003; 4(6):1703-12. PubMed ID: 14606899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The proteolytic stability and cytotoxicity studies of L-aspartic acid and L-diaminopropionic acid derived beta-peptides and a mixed alpha/beta-peptide.
    Ahmed S; Kaur K
    Chem Biol Drug Des; 2009 May; 73(5):545-52. PubMed ID: 19317848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate.
    Shen JY; Pan XY; Lim CH; Chan-Park MB; Zhu X; Beuerman RW
    Biomacromolecules; 2007 Feb; 8(2):376-85. PubMed ID: 17291060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol).
    Loh XJ; Tan KK; Li X; Li J
    Biomaterials; 2006 Mar; 27(9):1841-50. PubMed ID: 16305807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial degradation of poly(amino acid)s.
    Obst M; Steinbüchel A
    Biomacromolecules; 2004; 5(4):1166-76. PubMed ID: 15244426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels.
    Goraltchouk A; Freier T; Shoichet MS
    Biomaterials; 2005 Dec; 26(36):7555-63. PubMed ID: 16005955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes.
    Wang Z; Roberge C; Dao LH; Wan Y; Shi G; Rouabhia M; Guidoin R; Zhang Z
    J Biomed Mater Res A; 2004 Jul; 70(1):28-38. PubMed ID: 15174106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair.
    Söntjens SH; Nettles DL; Carnahan MA; Setton LA; Grinstaff MW
    Biomacromolecules; 2006 Jan; 7(1):310-6. PubMed ID: 16398530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane). III. In vivo biocompatibility and biostability.
    Hyung Park J; Bae YH
    J Biomed Mater Res A; 2003 Feb; 64(2):309-19. PubMed ID: 12522818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of poly(N-isopropylacrylamide)-modified poly(2-hydroxyethyl acrylate) hydrogels by interpenetrating polymer networks for sustained drug release.
    Liu YY; Lü J; Shao YH
    Macromol Biosci; 2006 Jun; 6(6):452-8. PubMed ID: 16761277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-cross-linked hydrogels with polysaccharide-poly(amino acid) structure: new biomaterials for pharmaceutical applications.
    Pitarresi G; Pierro P; Palumbo FS; Tripodo G; Giammona G
    Biomacromolecules; 2006 Apr; 7(4):1302-10. PubMed ID: 16602753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The mechanism of degradation for the absorbable biomaterials poly(epsilon-caprolactone) in vitro and in vivo].
    Chen J; Ma A; Lai Y; Chen Y; Cui M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Dec; 14(4):334-7. PubMed ID: 11367622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.