These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 7024641)

  • 1. Mechanics of blood flow.
    Skalak R; Keller SR; Secomb TW
    J Biomech Eng; 1981 May; 103(2):102-15. PubMed ID: 7024641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red blood cell mechanics and capillary blood rheology.
    Secomb TW
    Cell Biophys; 1991 Jun; 18(3):231-51. PubMed ID: 1726534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and nonlinear one-dimensional models of pulse wave transmission at high Womersley numbers.
    Reuderink PJ; Hoogstraten HW; Sipkema P; Hillen B; Westerhof N
    J Biomech; 1989; 22(8-9):819-27. PubMed ID: 2613717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipative effects due to hydrodynamic interactions between red cells in a theory of pulse transmission and oscillatory flow in arteries.
    Kline KA; Allen SJ; Keshavarzi M
    Biorheology; 1972 Mar; 9(1):1-22. PubMed ID: 4647688
    [No Abstract]   [Full Text] [Related]  

  • 7. Dynamical clustering of red blood cells in capillary vessels.
    Boryczko K; Dzwinel W; Yuen DA
    J Mol Model; 2003 Feb; 9(1):16-33. PubMed ID: 12638008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical modeling of wave propagation phenomena: experimental determination of pulse wave velocity in viscous fluid-filled elastic tubes in a gravitation field.
    Žikić D; Stojadinović B; Nestorović Z
    Eur Biophys J; 2019 Jul; 48(5):407-411. PubMed ID: 31201474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood flow in capillary tubes: curvature and gravity effects.
    Hung TC; Hung TK; Bugliarello G
    Biorheology; 1980; 17(4):331-42. PubMed ID: 7260345
    [No Abstract]   [Full Text] [Related]  

  • 10. Rheology of blood cells as soft tissues.
    Skalak R; Chien S
    Biorheology; 1982; 19(3):453-61. PubMed ID: 7104483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wave propagation in a viscous fluid contained in an orthotropic elastic tube.
    Mirsky I
    Biophys J; 1967 Mar; 7(2):165-86. PubMed ID: 6048869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.
    Dong C; Chadwick RS; Schechter AN
    Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation of red blood cells and the viscoelastic properties of a concentrated red cell suspension.
    Murata T
    Biorheology; 1984; 21(3):379-91. PubMed ID: 6466807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tube law parametrization using in vitro data for one-dimensional blood flow in arteries and veins: TUBE LAW PARAMETRIZATION IN ARTERIES AND VEINS.
    Colombo C; Siviglia A; Toro EF; Bia D; Zócalo Y; Müller LO
    Int J Numer Method Biomed Eng; 2024 Apr; 40(4):e3803. PubMed ID: 38363555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model of unsteady collapsible tube behaviour.
    Bertram CD; Pedley TJ
    J Biomech; 1982; 15(1):39-50. PubMed ID: 7061526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood rheology and physiology of microcirculation.
    Schmid-Schönbein H
    Ric Clin Lab; 1981; 11 Suppl 1():13-33. PubMed ID: 7188106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative rheology of nucleated and non-nucleated red blood cells. I. Microrheology of avian erythrocytes during capillary flow.
    Gaehtgens P; Schmidt F; Will G
    Pflugers Arch; 1981 Jun; 390(3):278-82. PubMed ID: 7196028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes.
    Alonso C; Pries AR; Gaehtgens P
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H553-61. PubMed ID: 8368359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.
    Ikenaga Y; Nishi S; Komagata Y; Saito M; Lagrée PY; Asada T; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2381-8. PubMed ID: 24158293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell: from its mechanics to its motion in shear flow.
    Viallat A; Abkarian M
    Int J Lab Hematol; 2014 Jun; 36(3):237-43. PubMed ID: 24750669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.