These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 7025059)

  • 1. R-factor-mediated suppression of the galactose-sensitive phenotype of Escherichia coli K-12 galE Mutants.
    Fietta A; Grandi G; Malcovati M; Valentini G; Sgaramella V; Siccardi AG
    Plasmid; 1981 Jul; 6(1):78-85. PubMed ID: 7025059
    [No Abstract]   [Full Text] [Related]  

  • 2. Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDPglucose 4-epimerase.
    Poolman B; Royer TJ; Mainzer SE; Schmidt BF
    J Bacteriol; 1990 Jul; 172(7):4037-47. PubMed ID: 1694527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translation of galE and coordination of galactose operon expression in Escherichia coli: effects of insertions and deletions in the non-translated leader sequence.
    Bingham AH; Busby SJ
    Mol Microbiol; 1987 Jul; 1(1):117-24. PubMed ID: 2838723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide sequences of the gal E gene and the gal T gene of E. coli.
    Lemaire HG; Müller-Hill B
    Nucleic Acids Res; 1986 Oct; 14(19):7705-11. PubMed ID: 3022232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some galE mutants of Salmonella choleraesuis retain virulence.
    Nnalue NA; Stocker BA
    Infect Immun; 1986 Dec; 54(3):635-40. PubMed ID: 3781619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cDNA from rat cells with reconstitutive galactose-epimerase activity in E. coli.
    Zeschnigk M; von Wilcken-Bergmann B; Starzinski-Powitz A
    Nucleic Acids Res; 1990 Sep; 18(17):5289. PubMed ID: 2205840
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of Gne and GalE in the virulence of Aeromonas hydrophila serotype O34.
    Canals R; Jiménez N; Vilches S; Regué M; Merino S; Tomás JM
    J Bacteriol; 2007 Jan; 189(2):540-50. PubMed ID: 17098903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gal genes for the Leloir pathway of Lactobacillus casei 64H.
    Bettenbrock K; Alpert CA
    Appl Environ Microbiol; 1998 Jun; 64(6):2013-9. PubMed ID: 9603808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization, expression, and mutation of the Lactococcus lactis galPMKTE genes, involved in galactose utilization via the Leloir pathway.
    Grossiord BP; Luesink EJ; Vaughan EE; Arnaud A; de Vos WM
    J Bacteriol; 2003 Feb; 185(3):870-8. PubMed ID: 12533462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of galE in the biosynthesis and function of gonococcal lipopolysaccharide.
    Robertson BD; Frosch M; van Putten JP
    Mol Microbiol; 1993 May; 8(5):891-901. PubMed ID: 8355614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assignment of a gene for uridine diphosphate galactose-4-epimerase to human chromosome 1 by somatic cell hybridization, with evidence for a regional assignment to 1pter yields 1p21.
    Benn PA; Shows TB; D'Ancona GG; Croce CM; Orkwiszewski KG; Mellman WJ
    Cytogenet Cell Genet; 1979; 24(3):138-42. PubMed ID: 477411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular analysis of a complex locus from Haemophilus influenzae involved in phase-variable lipopolysaccharide biosynthesis.
    Maskell DJ; Szabo MJ; Butler PD; Williams AE; Moxon ER
    Mol Microbiol; 1991 May; 5(5):1013-22. PubMed ID: 1956282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential translation efficiency explains discoordinate expression of the galactose operon.
    Queen C; Rosenberg M
    Cell; 1981 Jul; 25(1):241-9. PubMed ID: 7023696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and chemical analysis of 7-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-L-glycero-D-manno-heptose as a constituent of the lipopolysaccharides of the UDP-galactose epimerase-less mutant J-5 of Escherichia coli and Vibrio cholerae.
    Kaca W; de Jongh-Leuvenink J; Zähringer U; Rietschel ET; Brade H; Verhoef J; Sinnwell V
    Carbohydr Res; 1988 Aug; 179():289-99. PubMed ID: 3061645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and molecular analysis of the galE gene of Neisseria meningitidis and its role in lipopolysaccharide biosynthesis.
    Jennings MP; van der Ley P; Wilks KE; Maskell DJ; Poolman JT; Moxon ER
    Mol Microbiol; 1993 Oct; 10(2):361-9. PubMed ID: 7934827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative route for biosynthesis of amino sugars in Escherichia coli K-12 mutants by means of a catabolic isomerase.
    Vogler AP; Trentmann S; Lengeler JW
    J Bacteriol; 1989 Dec; 171(12):6586-92. PubMed ID: 2687246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microassay for UDP-galactose 4-epimerase activity.
    Merril CR; Das AK; LaPolla RJ; Prissovsky I
    Anal Biochem; 1976 May; 72():606-13. PubMed ID: 782288
    [No Abstract]   [Full Text] [Related]  

  • 18. The araIc mutation in Escherichia coli B/r.
    Cass LG; Horwitz AH; Wilcox G
    J Bacteriol; 1981 Jun; 146(3):1098-1105. PubMed ID: 6263857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature of deletions formed in response to IS2 in a revertant of the gal3 insertion of E. coli.
    Ahmed A; Scraba D
    Mol Gen Genet; 1978 Jul; 163(2):189-96. PubMed ID: 355848
    [No Abstract]   [Full Text] [Related]  

  • 20. Identification of the galE gene and a galE homolog and characterization of their roles in the biosynthesis of lipopolysaccharide in a serotype O:8 strain of Yersinia enterocolitica.
    Pierson DE; Carlson S
    J Bacteriol; 1996 Oct; 178(20):5916-24. PubMed ID: 8830687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.