BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 702517)

  • 1. Some effects of trinitrocresolate and valinomycin on Na and K transport across thin lipid bilayer membranes: a steady-state analysis with simultaneous tracer and electrical measurements.
    Ginsburg H; Tosteson MT; Tosteson DC
    J Membr Biol; 1978 Sep; 42(2):153-68. PubMed ID: 702517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of 2,4,6-trinitro-m-cresol on cation and anion transport in sheep red blood cells.
    Gunn RB; Tosteson DC
    J Gen Physiol; 1971 May; 57(5):593-609. PubMed ID: 5553103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of peptide PV on the ionic permeability of lipid bilayer membranes.
    Ting-Beall HP; Tosteson MT; Gisin BF; Tosteson DC
    J Gen Physiol; 1974 Apr; 63(4):492-508. PubMed ID: 4820091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of rates of H+, Na+ and K+ transport across phospholipid vesicular membrane by the combined action of carbonyl cyanide m-chlorophenylhydrazone and valinomycin: temperature-jump studies.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1995 May; 1235(2):323-35. PubMed ID: 7756342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparison of the electrical and isotope characteristics of ionic transport through bilateral phospholipid membranes].
    Shchagina LV; Grinfel'dt AE; Lev AA
    Tsitologiia; 1976 Feb; 18(2):189-94. PubMed ID: 951740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nystatin and valinomycin induce tubuloglomerular feedback.
    Ren Y; Yu H; Wang H; Carretero OA; Garvin JL
    Am J Physiol Renal Physiol; 2001 Dec; 281(6):F1102-8. PubMed ID: 11704561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of valinomycin on the ionic permeability of thin lipid membranes.
    Andreoli TE; Tieffenberg M; Tosteson DC
    J Gen Physiol; 1967 Dec; 50(11):2527-45. PubMed ID: 5584619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium and potassium fluxes and membrane potential of human neutrophils: evidence for an electrogenic sodium pump.
    Simchowitz L; Spilberg I; De Weer P
    J Gen Physiol; 1982 Mar; 79(3):453-79. PubMed ID: 6281359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumour cells.
    Hoffmann EK; Simonsen LO; Sjøholm C
    J Physiol; 1979 Nov; 296():61-84. PubMed ID: 529133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. K+-dependent Na+ transport driven by respiration in Escherichia coli cells and membrane vesicles.
    Verkhovskaya ML; Verkhovsky MI; Wikström M
    Biochim Biophys Acta; 1996 Mar; 1273(3):207-16. PubMed ID: 8616158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formation and properties of thin lipid membranes from HK and LK sheep red cell lipids.
    Andreoli TE; Bangham JA; Tosteson DC
    J Gen Physiol; 1967 Jul; 50(6):1729-49. PubMed ID: 6034765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles.
    Goldshlegger R; Karlish SJ; Rephaeli A; Stein WD
    J Physiol; 1987 Jun; 387():331-55. PubMed ID: 2443682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation by small hydrophobic molecules of valinomycin-mediated potassium transport across phospholipid vesicle membranes.
    Clement NR; Gould MJ
    Biochemistry; 1981 Mar; 20(6):1539-43. PubMed ID: 6261799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of cation selectivity of valinomycin by complexing it with an anion: delta pH decay studies.
    Prabhananda BS; Kombrabail MH
    Biochem Mol Biol Int; 1996 Feb; 38(2):417-24. PubMed ID: 8850538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion transport mediated by the valinomycin analogue cyclo(L-Lac-L-Val-D-Pro-D-Val)3 in lipid bilayer membranes.
    Latorre R; Donovan JJ; Koroshetz W; Tosteson DC; Gisin BF
    J Gen Physiol; 1981 Apr; 77(4):387-417. PubMed ID: 7241088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium transport in opossum kidney cells: effects of Na-selective and K-selective ionizable cryptands, and of valinomycin, FCCP and nystatin.
    Loiseau A; Leroy C; Castaing M
    Biochim Biophys Acta; 1997 Nov; 1330(1):39-49. PubMed ID: 9375811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical measurements of Na-Ca-K exchange currents in intact outer segments isolated from bovine retinal rods.
    Schnetkamp PP
    J Gen Physiol; 1991 Sep; 98(3):555-73. PubMed ID: 1722239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H+, K+, and Na+ transport across phospholipid vesicular membrane by the combined action of proton uncoupler 2,4-dinitrophenol and valinomycin.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1996 Jul; 1282(2):193-9. PubMed ID: 8703973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D(-)3-hydroxybutyrate cotransport with Na in rat renal brush border membrane vesicles.
    Barac-Nieto M
    Pflugers Arch; 1987 Apr; 408(4):321-7. PubMed ID: 3588250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.