BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 7025505)

  • 21. The creatine phosphate energy shuttle--the molecular asymmetry of a "pool".
    Bessman SP
    Anal Biochem; 1987 Mar; 161(2):519-23. PubMed ID: 3578809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Content of various high-energy phosphorus compounds and glycogen in the muscles under condition of altered thyroid gland function].
    Pawlik T
    Folia Med Cracov; 1978; 20(4):449-78. PubMed ID: 756853
    [No Abstract]   [Full Text] [Related]  

  • 23. [Role of creatine kinase and its substrates in the central nervous system in norm and in various pathologies].
    Nersesova LS
    Zh Evol Biokhim Fiziol; 2011; 47(2):120-7. PubMed ID: 21598696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleotides and organophosphates of cardiac, fast and slow muscles of chick during development.
    Radha E; Krishnamoorthy RV
    Comp Biochem Physiol B; 1973 Aug; 45(4):847-65. PubMed ID: 4269549
    [No Abstract]   [Full Text] [Related]  

  • 25. The kinetics of the creatine kinase reaction in neonatal rabbit heart: does the rate equation accurately describe the kinetics observed in the isolated perfused heart?
    McAuliffe JJ; Perry SB; Brooks EE; Ingwall JS
    Prog Clin Biol Res; 1989; 315():581-92. PubMed ID: 2798514
    [No Abstract]   [Full Text] [Related]  

  • 26. [The state of energy metabolism in the muscles of adrenalectomized rabbits during contraction].
    Korkach VI
    Biull Eksp Biol Med; 1972 Nov; 73(11):31-3. PubMed ID: 4645171
    [No Abstract]   [Full Text] [Related]  

  • 27. [Comparative studies on the influence of creatine phosphate and creatinine phosphate on respiration and oxidative phosphorylation of isolated heart and liver mitochondria].
    Noack E
    Arzneimittelforschung; 1973 Aug; 23(8):1037-41. PubMed ID: 4801023
    [No Abstract]   [Full Text] [Related]  

  • 28. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis.
    Wallimann T; Wyss M; Brdiczka D; Nicolay K; Eppenberger HM
    Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):21-40. PubMed ID: 1731757
    [No Abstract]   [Full Text] [Related]  

  • 29. Ca2+ transport by mitochondria and its possible role in the cardiac contraction-relaxation cycle.
    Lehninger AL
    Circ Res; 1974 Sep; 35 Suppl 3():83-90. PubMed ID: 4606316
    [No Abstract]   [Full Text] [Related]  

  • 30. Is there the creatine kinase equilibrium in working heart cells?
    Saks VA; Aliev MK
    Biochem Biophys Res Commun; 1996 Oct; 227(2):360-7. PubMed ID: 8878521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Immediate sources of energy in muscle contraction].
    Maréchal G
    J Physiol (Paris); 1972; 65():Suppl 1:5A-50. PubMed ID: 4569816
    [No Abstract]   [Full Text] [Related]  

  • 32. Effect of fasting, hypocaloric feeding, and refeeding on the energetics of stimulated rat muscle as assessed by nuclear magnetic resonance spectroscopy.
    Mijan de la Torre A; Madapallimattam A; Cross A; Armstrong RL; Jeejeebhoy KN
    J Clin Invest; 1993 Jul; 92(1):114-21. PubMed ID: 8325976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free-energy carriers in human cultured muscle cells.
    Bolhuis PA; de Zwart HJ; Ponne NJ; de Jong JM
    Muscle Nerve; 1985 Jan; 8(1):22-6. PubMed ID: 4058454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiological implications of linear kinetics of mitochondrial respiration in vitro.
    Kemp G
    Am J Physiol Cell Physiol; 2008 Sep; 295(3):C844-6; author reply C847-8. PubMed ID: 18776157
    [No Abstract]   [Full Text] [Related]  

  • 35. Regulation of energy metabolism by creatine in cardiac and skeletal muscle cells in culture.
    Seraydarian MW; Artaza L
    J Mol Cell Cardiol; 1976 Sep; 08(9):669-78. PubMed ID: 972404
    [No Abstract]   [Full Text] [Related]  

  • 36. [Stimulation of replanted extremity muscles and its effect on energy processes].
    Shljakhova OO; Pidterherja VH
    Ukr Biokhim Zh; 1977; 49(5):9-13. PubMed ID: 162751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycolytic and oxidative energy metabolism and contraction characteristics of intact human muscle.
    Hultman E; Sjöholm H; Sahlin K; Edström L
    Ciba Found Symp; 1981; 82():19-40. PubMed ID: 6271506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Murine muscles deficient in creatine kinase tolerate repeated series of high-intensity contractions.
    Gorselink M; Drost MR; van der Vusse GJ
    Pflugers Arch; 2001 Nov; 443(2):274-9. PubMed ID: 11713654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical change and energy production during contraction of frog muscle: how are their time courses related?
    Curtin NA; Woledge RC
    J Physiol; 1979 Mar; 288():353-66. PubMed ID: 313981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Function of creatine kinase localization in muscle contraction.
    Koons S; Cooke R
    Adv Exp Med Biol; 1986; 194():129-37. PubMed ID: 3529853
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.