These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7025753)

  • 1. Physiological response of Saccharomyces cerevisiae to 15-azasterol-mediated growth inhibition.
    Rodriguez RJ; Parks LW
    Antimicrob Agents Chemother; 1981 Aug; 20(2):184-9. PubMed ID: 7025753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological effects of an antimycotic azasterol on cultures of Saccharomyces cerevisiae.
    Hays PR; Neal WD; Parks LW
    Antimicrob Agents Chemother; 1977 Aug; 12(2):185-91. PubMed ID: 332071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between antifungal activity and inhibition of sterol biosynthesis in miconazole, clotrimazole, and 15-azasterol.
    Taylor FR; Rodriguez RJ; Parks LW
    Antimicrob Agents Chemother; 1983 Apr; 23(4):515-21. PubMed ID: 6344784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and antifungal homoazasterol production in Geotrichum flavo-brunneum.
    Rodriguez RJ; Parks LW
    Antimicrob Agents Chemother; 1980 Nov; 18(5):822-8. PubMed ID: 7192535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of ergosta-8,14-dien-3beta-ol by Saccharomyces cerevisiae cultured with an azasterol antimycotic agent.
    Hays PR; Parks LW; Pierce HD; Oehlschlager AC
    Lipids; 1977 Aug; 12(8):666-8. PubMed ID: 331008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homoazasterol-mediated inhibition of yeast sterol biosynthesis.
    Bailey RB; Hays PR; Parks LW
    J Bacteriol; 1976 Dec; 128(3):730-4. PubMed ID: 791927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delta14-sterol reductase in Saccharomyces cerevisiae.
    Bottema CK; Parks LW
    Biochim Biophys Acta; 1978 Dec; 531(3):301-7. PubMed ID: 32908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode of action of the azasteroid antibiotic 15-aza-24 methylene-d-homocholesta-8,14-dien-3 beta-ol in Ustilago maydis.
    Woloshuk CP; Sisler HD; Dutky SR
    Antimicrob Agents Chemother; 1979 Jul; 16(1):81-97. PubMed ID: 383015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of the intracellular adenosine triphosphate pool of Saccharomyces cerevisiae to growth inhibition induced by excess L-methionine.
    Bailey RB; Parks LW
    J Bacteriol; 1972 Aug; 111(2):542-6. PubMed ID: 4559735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of an azasterol inhibitor of sterol 24-transmethylation on sterol biosynthesis and growth of Leishmania donovani promastigotes.
    Haughan PA; Chance ML; Goad LJ
    Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):31-8. PubMed ID: 7755579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azasterol inhibitors in yeast. Inhibition of the 24-methylene sterol delta24(28)-reductase and delta24-sterol methyltransferase of Saccharomyces cerevisiae by 23-azacholesterol.
    Pierce HD; Pierce AM; Srinivasan R; Unrau AM; Oehlschlager AC
    Biochim Biophys Acta; 1978 Jun; 529(3):429-37. PubMed ID: 352402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of cellobiose lipid B on Saccharomyces cerevisiae cells: K+ leakage and inhibition of polyphosphate accumulation].
    Kulakovskaia EV; Ivanov AIu; Kulakovskaia TV; Vagabov VM; Kulaev IS
    Mikrobiologiia; 2008; 77(3):331-5. PubMed ID: 18683649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the toxic effect of short- and medium-chain monocarboxylic acids on the growth of Saccharomyces cerevisiae using the CO2-auxo-accelerostat fermentation system.
    Kasemets K; Kahru A; Laht TM; Paalme T
    Int J Food Microbiol; 2006 Oct; 111(3):206-15. PubMed ID: 16945441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH?
    Bracey D; Holyoak CD; Coote PJ
    J Appl Microbiol; 1998 Dec; 85(6):1056-66. PubMed ID: 9871326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the mode of action of a new antifungal antibiotic, aculeacin A: inhibition of cell wall synthesis in Saccharomyces cerevisiae.
    Mizoguchi J; Saito T; Mizuno K; Hayano K
    J Antibiot (Tokyo); 1977 Apr; 30(4):308-13. PubMed ID: 324960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic antifungal activity of statin-azole associations as witnessed by Saccharomyces cerevisiae- and Candida utilis-bioassays and ergosterol quantification.
    Cabral ME; Figueroa LI; Fariña JI
    Rev Iberoam Micol; 2013 Jan; 30(1):31-8. PubMed ID: 23069981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase.
    Bojsen R; Regenberg B; Folkesson A
    BMC Microbiol; 2014 Dec; 14():305. PubMed ID: 25472667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ergosterol depletion and 4-methyl sterols accumulation in the yeast Saccharomyces cerevisiae treated with an antifungal, 6-amino-2-n-pentylthiobenzothiazole.
    Kuchta T; Bartková K; Kubinec R
    Biochem Biophys Res Commun; 1992 Nov; 189(1):85-91. PubMed ID: 1449509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological alterations of Saccharomyces cerevisiae induced by benanomicin A, an antifungal antibiotic with mannan affinity.
    Watanabe M; Nishiyama Y; Inouye S; Yamaguchi H; Kondo S; Takeuchi T
    Microbiol Immunol; 1998; 42(5):365-70. PubMed ID: 9654368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactoferrin perturbs lipid rafts and requires integrity of Pma1p-lipid rafts association to exert its antifungal activity against Saccharomyces cerevisiae.
    Santos-Pereira C; Andrés MT; Chaves SR; Fierro JF; Gerós H; Manon S; Rodrigues LR; Côrte-Real M
    Int J Biol Macromol; 2021 Feb; 171():343-357. PubMed ID: 33421469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.