BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7025889)

  • 1. Study of transfer ribonucleic acid unfolding by dynamic nuclear magnetic resonance.
    Johnston PD; Redfield AG
    Biochemistry; 1981 Jul; 20(14):3996-4006. PubMed ID: 7025889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton exchange rates in transfer RNA as a function of spermidine and magnesium.
    Tropp JS; Redfield AG
    Nucleic Acids Res; 1983 Apr; 11(7):2121-34. PubMed ID: 6340067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An NMR study of the exchange rates for protons involved in the secondary and tertiary structure of yeast tRNA Phe.
    Johnston PD; Redfield AG
    Nucleic Acids Res; 1977 Oct; 4(10):3599-615. PubMed ID: 337239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton exchange and basepair kinetics of yeast tRNA(Phe) and tRNA(Asp1).
    Choi BS; Redfield AG
    J Biochem; 1995 Mar; 117(3):515-20. PubMed ID: 7629016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear magnetic resonance and nuclear Overhauser effect study of yeast phenylalanine transfer ribonucleic acid imino protons.
    Johnston PD; Redfield AG
    Biochemistry; 1981 Mar; 20(5):1147-56. PubMed ID: 7013786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of tertiary base pair resonances in the nuclear magnetic resonance spectra of transfer ribonucleic acid.
    Reid BR; McCollum L; Ribeiro NS; Abbate J; Hurd RE
    Biochemistry; 1979 Sep; 18(18):3996-4005. PubMed ID: 385039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imino proton NMR assignments and ion-binding studies on Escherichia coli tRNA3Gly.
    Hyde EI
    Eur J Biochem; 1986 Feb; 155(1):57-68. PubMed ID: 2419133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop.
    Gorenstein DG; Goldfield EM
    Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of secondary and tertiary solution structure of yeast tRNA(Asp) by nuclear magnetic resonance. Assignment of G.U ring NH and hydrogen-bonded base pair proton resonances.
    Robillard GT; Hilbers CW; Reid BR; Gangloff J; Dirheimer G; Shulman RG
    Biochemistry; 1976 May; 15(9):1883-8. PubMed ID: 773428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in tertiary structure accompanying a single base change in transfer RNA. Proton magnetic resonance and aminoacylation studies of Escherichia coli tRNAMet f1 and tRNAMet f3 and their spin-labeled (s4U8) derivatives.
    Daniel WE; Cohn M
    Biochemistry; 1976 Sep; 15(18):3917-24. PubMed ID: 183808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear magnetic resonance investigation of the base-pairing structure of Escherichia coli tRNATyr monomer and dimer conformations.
    Rordorf BF; Kearns DR
    Biochemistry; 1976 Jul; 15(15):3320-30. PubMed ID: 782517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High resolution phosphorus NMR spectroscopy of transfer ribonucleic acids.
    Gorenstein DG; Goldfield EM
    Mol Cell Biochem; 1982 Jul; 46(2):97-120. PubMed ID: 6180293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen-bonded protons in the tertiary structure of yeast tRNAPhe in solution.
    Römer R; Varadi V
    Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1561-4. PubMed ID: 323858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorine-19 nuclear magnetic resonance studies of the structure of 5-fluorouracil-substituted Escherichia coli transfer RNA.
    Hardin CC; Gollnick P; Kallenbach NR; Cohn M; Horowitz J
    Biochemistry; 1986 Sep; 25(19):5699-709. PubMed ID: 3535884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear magnetic resonance studies on transfer ribonucleic acid: assignment of AU tertiary resonances.
    Hurd RE; Reid BR
    Biochemistry; 1979 Sep; 18(18):4005-11. PubMed ID: 385040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time solvent exchange studies of the imino and amino protons of yeast phenylalanine transfer RNA by Fourier transform NMR.
    Johnston PD; Figueroa N; Redfield AG
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3130-4. PubMed ID: 386331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear overhauser effect study of yeast aspartate transfer ribonucleic acid.
    Roy S; Papastavros MZ; Redfield AG
    Biochemistry; 1982 Nov; 21(24):6081-8. PubMed ID: 6758844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1H nuclear magnetic resonance of modified bases of valine transfer ribonucleic acid (Escherichia coli). A direct monitor of sequential thermal unfolding.
    Kastrup RV; Schmidt PG
    Biochemistry; 1975 Aug; 14(16):3612-8. PubMed ID: 1100098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting order of successively longer yeast phenylalanine-accepting transfer ribonucleic acid fragments with a common 5' end.
    Boyle JA; Kim SH; Cole PE
    Biochemistry; 1983 Feb; 22(4):741-5. PubMed ID: 6340726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melting of Saccharomyces cerevisiae 5S ribonucleic acid: ultraviolet absorption, circular dichroism, and 360-MHz proton nuclear magnetic resonance spectroscopy.
    Luoma GA; Burns PD; Bruce RE; Marshall AG
    Biochemistry; 1980 Nov; 19(23):5456-62. PubMed ID: 7004487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.