BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 7025904)

  • 1. Spatial requirements for insulin-sensitive sugar transport in rat adipocytes.
    Holman GD; Pierce EJ; Rees WD
    Biochim Biophys Acta; 1981 Sep; 646(3):382-8. PubMed ID: 7025904
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of intracellular energy in insulin's ability to activate 3-O-methylglucose transport by rat adipocytes.
    Siegel J; Olefsky JM
    Biochemistry; 1980 May; 19(10):2183-90. PubMed ID: 6990973
    [No Abstract]   [Full Text] [Related]  

  • 3. Kinetic parameters of transport of 3-O-methylglucose and glucose in adipocytes.
    Whitesell RR; Gliemann J
    J Biol Chem; 1979 Jun; 254(12):5276-83. PubMed ID: 447648
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of puromycin on sugar transport in isolated rat adipocytes.
    Kubo K; Foley JE
    Biochim Biophys Acta; 1985 Jul; 817(1):187-9. PubMed ID: 4005255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose tolerance factor stimulates 3-O-methylglucose transport into isolated rat adipocytes.
    Tokuda M; Kashiwagi A; Wakamiya E; Oguni T; Mino M; Kagamiyama H
    Biochem Biophys Res Commun; 1987 May; 144(3):1237-42. PubMed ID: 3555500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stimulating effect of 3',5'-(cyclic)adenosine monophosphate and lipolytic hormones on 3-O-methylglucose transport and 45Ca2+ release in adipocytes and skeletal muscle of the rat.
    Rasmussen MJ; Clausen T
    Biochim Biophys Acta; 1982 Dec; 693(2):389-97. PubMed ID: 6297557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interleukin-1 stimulates glucose transport in rat adipose cells. Evidence for receptor discrimination between IL-1 beta and IL-1 alpha.
    Garcia-Welsh A; Schneiderman JS; Baly DL
    FEBS Lett; 1990 Sep; 269(2):421-4. PubMed ID: 2205515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of 3-O-methylglucose transport in adipocytes by a synthetic human growth hormone fragment.
    Ng FM; Hoich RI
    Biochem Int; 1985 Mar; 10(3):507-16. PubMed ID: 3893436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulin binding, glucose oxidation, and methylglucose transport in isolated adipocytes from pregnant rats near term.
    Toyoda N; Murata K; Sugiyama Y
    Endocrinology; 1985 Mar; 116(3):998-1002. PubMed ID: 3882402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity.
    Mühlbacher C; Karnieli E; Schaff P; Obermaier B; Mushack J; Rattenhuber E; Häring HU
    Biochem J; 1988 Feb; 249(3):865-70. PubMed ID: 3281656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetrical kinetic parameters for 3-O-methyl-D-glucose transport in adipocytes in the presence and in the absence of insulin.
    Taylor LP; Holman GD
    Biochim Biophys Acta; 1981 Apr; 642(2):325-35. PubMed ID: 7025902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between deactivation of insulin-stimulated glucose transport and insulin dissociation in isolated rat adipocytes.
    Ciaraldi TP; Olefsky JM
    J Biol Chem; 1980 Jan; 255(2):327-30. PubMed ID: 7356614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the effects of insulin and H2O2 on adipocyte glucose transport.
    Ciaraldi TP; Olefsky JM
    J Cell Physiol; 1982 Mar; 110(3):323-8. PubMed ID: 7045141
    [No Abstract]   [Full Text] [Related]  

  • 14. Cyclic AMP modulates insulin binding and induces post-receptor insulin resistance of glucose transport in isolated rat adipocytes.
    Kirsch D; Kemmler W; Häring HU
    Biochem Biophys Res Commun; 1983 Aug; 115(1):398-405. PubMed ID: 6193793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposite effects of a beta-adrenergic agonist and a phosphodiesterase inhibitor on glucose transport in isolated human adipocytes: isoproterenol increases Vmax and IBMX increases Ks.
    Kashiwagi A; Foley JE
    Biochem Biophys Res Commun; 1982 Aug; 107(3):1151-7. PubMed ID: 6182880
    [No Abstract]   [Full Text] [Related]  

  • 16. The simple model of adipocyte hexose transport. Kinetic features, effect of insulin, and network thermodynamic computer simulations.
    May JM; Mikulecky DC
    J Biol Chem; 1982 Oct; 257(19):11601-8. PubMed ID: 6749843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counter-regulation of insulin-stimulated glucose transport by catecholamines in the isolated rat adipose cell.
    Smith U; Kuroda M; Simpson IA
    J Biol Chem; 1984 Jul; 259(14):8758-63. PubMed ID: 6086611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar transport in fat cells: effects of mechanical agitation, cell-bound insulin, and temperature.
    Vega FV; Kono T
    Arch Biochem Biophys; 1979 Jan; 192(1):120-7. PubMed ID: 434813
    [No Abstract]   [Full Text] [Related]  

  • 19. In vivo and in vitro effect of p-chlorophenoxyisobutyrate on insulin binding and glucose transport in isolated rat adipocytes.
    Watanabe N; Kobayashi M; Maegawa H; Ishibashi O; Takata Y; Shigeta Y
    Endocrinol Jpn; 1985 Dec; 32(6):829-36. PubMed ID: 3914414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of insulin-stimulated glucose transport in rat adipocytes by nucleoside transport inhibitors.
    Steinfelder HJ; Joost HG
    FEBS Lett; 1988 Jan; 227(2):215-9. PubMed ID: 3276559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.