These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7025924)

  • 1. [Interaction of the membrane transport proteins in E. coli K12].
    Kalachev IIa; Umiaroz AM; Burd GI
    Biokhimiia; 1981 Apr; 46(4):732-43. PubMed ID: 7025924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Alpha-methylglucoside transmembrane phosphorylation and regulation of the beta-galactoside permease activity in E. coli K12].
    Kalachev IIa; Gershanovich VN; Burd GI
    Biokhimiia; 1980 May; 45(5):873-82. PubMed ID: 6991004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of regulation of the lactose permease by the phosphotransferase system in Escherichia coli: evidence for protein-protein interaction.
    Osumi T; Saier MH
    Ann Microbiol (Paris); 1982; 133(2):269-73. PubMed ID: 7044217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of galactoside transport by the PTS.
    Kuroda M; Wilson TH; Tsuchiya T
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):381-4. PubMed ID: 11361068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the rate limiting step in downhill transport via the LacY permease of Escherichia coli.
    Rotman B
    J Supramol Struct; 1977; 7(1):29-35. PubMed ID: 415184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a lactose permease mutant that binds IIAGlc in the absence of ligand.
    Sondej M; Vázquez-Ibar JL; Farshidi A; Peterkofsky A; Kaback HR
    Biochemistry; 2003 Aug; 42(30):9153-9. PubMed ID: 12885249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase.
    Aboulwafa M; Hvorup R; Saier MH
    Arch Microbiol; 2004 Jan; 181(1):26-34. PubMed ID: 14634719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanism of catabolite repression in Escherichia coli bacteria: interaction between transport proteins and adenylate cyclase].
    Voloshin AG; Belkina NA; Burd GI
    Biokhimiia; 1983 Oct; 48(10):1624-33. PubMed ID: 6315085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between beta-galactoside transport system and phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli K12.
    Burd GI; Bol'shakova TN; Gershanovich VN
    Mol Biol; 1973; 7(3):252-6. PubMed ID: 4589445
    [No Abstract]   [Full Text] [Related]  

  • 10. Selective advantages of various bacterial carbohydrate transport mechanisms.
    Andrews KJ; Lin EC
    Fed Proc; 1976 Aug; 35(10):2185-9. PubMed ID: 820574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinetic mechanism of galactoside/H+ cotransport in Escherichia coli.
    Wright JK
    Biochim Biophys Acta; 1986 Mar; 855(3):391-416. PubMed ID: 2418878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The different functions of BglF, the E. coli beta-glucoside permease and sensor of the bgl system, have different structural requirements.
    Chen Q; Amster-Choder O
    Biochemistry; 1998 Dec; 37(48):17040-7. PubMed ID: 9836599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of N-acetyl-D-galactosamine in Escherichia coli K92: effect on acetyl-amino sugar metabolism and polysialic acid production.
    Ezquerro-Sáenz C; Ferrero MA; Revilla-Nuin B; López Velasco FF; Martínez-Blanco H; Rodríguez-Aparicio LB
    Biochimie; 2006 Jan; 88(1):95-102. PubMed ID: 16040188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine-scanning mutagenesis of helix VI and the flanking hydrophilic domains on the lactose permease of Escherichia coli.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Apr; 35(16):5333-8. PubMed ID: 8611521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proceedings: Reversible inhibition of E. coli D-galactoside transport protein (y-gene product) by urea and by aprotic solvents.
    Sandermann H
    Hoppe Seylers Z Physiol Chem; 1974 Oct; 355(10):1246. PubMed ID: 4618246
    [No Abstract]   [Full Text] [Related]  

  • 16. The role of transmembrane domain III in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Frillingos S; Bibi E; Gonzalez A; Kaback HR
    Protein Sci; 1994 Dec; 3(12):2302-10. PubMed ID: 7756986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of a mutational lesion to the phosphoenolpyruvate-dependent phosphotransferase system on the transport of hydrolyzable beta-galactosides in Escherichia coli K12].
    Bol'shakova TN; Burd GI; Gershanovich VN
    Biokhimiia; 1974; 39(4):808-10. PubMed ID: 4613390
    [No Abstract]   [Full Text] [Related]  

  • 18. [The alpha-methylglucoside transport in Escherichia coli K12 cells].
    Shul'gina MV; Kalacheb IIa; Burd GI
    Biokhimiia; 1977 Dec; 42(12):2235-45. PubMed ID: 339963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circumstantial evidence for cytochrome b1 involvement in the functioning of lac-permease in respiring Escherichia coli.
    Yariv J
    J Theor Biol; 1996 Oct; 182(4):459-62. PubMed ID: 8944892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity and topology of the Escherichia coli xanthosine permease, a representative of the NHS subfamily of the major facilitator superfamily.
    Nørholm MH; Dandanell G
    J Bacteriol; 2001 Aug; 183(16):4900-4. PubMed ID: 11466294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.