These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7025924)

  • 21. Membrane localization itself but not binding to IICB is directly responsible for the inactivation of the global repressor Mlc in Escherichia coli.
    Tanaka Y; Itoh F; Kimata K; Aiba H
    Mol Microbiol; 2004 Aug; 53(3):941-51. PubMed ID: 15255904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. beta-D-Galactoside transport in Escherichia coli: substrate recognition.
    Sandermann H
    Eur J Biochem; 1977 Nov; 80(2):507-15. PubMed ID: 336372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for the functional association of enzyme I and HPr of the phosphoenolpyruvate-sugar phosphotransferase system with the membrane in sealed vesicles of Escherichia coli.
    Saier MH; Cox DF; Feucht BU; Novotny MJ
    J Cell Biochem; 1982; 18(2):231-8. PubMed ID: 7040430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relation between the oligomerization state and the transport and phosphorylation function of the Escherichia coli mannitol transport protein: interaction between mannitol-specific enzyme II monomers studied by complementation of inactive site-directed mutants.
    Boer H; ten Hoeve-Duurkens RH; Robillard GT
    Biochemistry; 1996 Oct; 35(39):12901-8. PubMed ID: 8841134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lactose-H+(-OH) transport system of Escherichia coli. Multistate gated pore model based on half-sites stoichiometry for high-affinity substrate binding in a symmetrical dimer.
    Lombardi FJ
    Biochim Biophys Acta; 1981 Dec; 649(3):661-79. PubMed ID: 7032594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Kaback HR
    Protein Sci; 1993 Jun; 2(6):1024-33. PubMed ID: 8318887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition by 6-O-tosyl galactosides of beta-galactoside phosphorylation and transport by the lactose phosphotransferase system of Staphylococcus aureus.
    Hays JB; Sussman ML; Glass TW
    J Biol Chem; 1975 Nov; 250(22):8834-9. PubMed ID: 1184591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The lactose/H+ carrier of Escherichia coli: lac YUN mutation decreases the rate of active transport and mimics an energy-uncoupled phenotype.
    Wright JK; Seckler R
    Biochem J; 1985 Apr; 227(1):287-97. PubMed ID: 2986605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering transport protein function: theoretical and technical considerations using the sugar-transporting phosphotransferase system of Escherichia coli as a model system.
    Soberón X; Saier MH
    J Mol Microbiol Biotechnol; 2006; 11(6):302-7. PubMed ID: 17114894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of uncouplers on "downhill" beta-galactoside transport in energy-depleted cells of Escherichia coli.
    Cecchini G; Koch AL
    J Bacteriol; 1975 Jul; 123(1):187-95. PubMed ID: 1095550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on the mechanism of phosphorylation and transport of beta-galactosides by the lactose phosphotransferase system of Staphylococcus aureus. Kinetic investigations using tosyl galactosides as reversible dead-end inhibitors.
    Hays JB; Sussman ML
    Biochim Biophys Acta; 1976 Aug; 443(2):267-83. PubMed ID: 953019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inactivation of membrane transport in Escherichia coli by near-ultraviolet light.
    Koch AL; Doyle RJ; Kubitschek HE
    J Bacteriol; 1976 Apr; 126(1):140-6. PubMed ID: 770419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of sugar transport and phosphorylation via permeases of the bacterial phosphotransferase system: catalytic residues in the beta-glucoside-specific permease as defined by site-specific mutagenesis.
    Sutrina SL; Schnetz K; Rak B; Saier MH
    Res Microbiol; 1990; 141(3):368-74. PubMed ID: 2281195
    [No Abstract]   [Full Text] [Related]  

  • 34. The indirect nature of interaction of glucose transport with the system transporting galactosides.
    Koch AL
    Biochimie; 1985 Jan; 67(1):137-40. PubMed ID: 3888288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The kinetics of the beta-galactoside-proton symport of Escherichia coli.
    Page MG; West IC
    Biochem J; 1981 Jun; 196(3):721-31. PubMed ID: 6274320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subcellular localization and logistics of integral membrane protein biogenesis in Escherichia coli.
    Bogdanov M; Aboulwafa M; Saier MH
    J Mol Microbiol Biotechnol; 2013; 23(1-2):24-34. PubMed ID: 23615193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How carbohydrates cross the lipid membrane of bacterial cells.
    Kornberg HL
    Curr Top Cell Regul; 1992; 33():49-63. PubMed ID: 1499344
    [No Abstract]   [Full Text] [Related]  

  • 38. The transient kinetics of uptake of galactosides into Escherichia coli.
    Page MG; West IC
    Biochem J; 1984 Nov; 223(3):723-31. PubMed ID: 6391468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular aspects of sugar:ion cotransport.
    Wright JK; Seckler R; Overath P
    Annu Rev Biochem; 1986; 55():225-48. PubMed ID: 3527043
    [No Abstract]   [Full Text] [Related]  

  • 40. Characterization of soluble enzyme II complexes of the Escherichia coli phosphotransferase system.
    Aboulwafa M; Saier MH
    J Bacteriol; 2004 Dec; 186(24):8453-62. PubMed ID: 15576795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.