These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7026323)

  • 1. Anti-tubulin immunofluorescence microscopy of microtubules present during the pronuclear movement of sea urchin fertilization.
    Bestor TH; Schatten G
    Dev Biol; 1981 Nov; 88(1):80-91. PubMed ID: 7026323
    [No Abstract]   [Full Text] [Related]  

  • 2. Motility and centrosomal organization during sea urchin and mouse fertilization.
    Schatten H; Schatten G
    Cell Motil Cytoskeleton; 1986; 6(2):163-75. PubMed ID: 3518956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radial cortical fibers and pronuclear migration in fertilized and artificially activated eggs of Lytechinus pictus.
    Mar H
    Dev Biol; 1980 Jul; 78(1):1-13. PubMed ID: 7399136
    [No Abstract]   [Full Text] [Related]  

  • 4. Relation of intracellular pH and pronuclear development in the sea urchin, Arbacia punctulata. A fine structural analysis.
    Carron CP; Longo FJ
    Dev Biol; 1980 Oct; 79(2):478-87. PubMed ID: 7429016
    [No Abstract]   [Full Text] [Related]  

  • 5. Sperm incorporation, the pronuclear migrations, and their relation to the establishment of the first embryonic axis: time-lapse video microscopy of the movements during fertilization of the sea urchin Lytechinus variegatus.
    Schatten G
    Dev Biol; 1981 Sep; 86(2):426-37. PubMed ID: 7286407
    [No Abstract]   [Full Text] [Related]  

  • 6. Distribution of tubulin-containing structures in the egg of the sea urchin Strongylocentrotus purpuratus from fertilization through first cleavage.
    Harris P; Osborn M; Weber K
    J Cell Biol; 1980 Mar; 84(3):668-79. PubMed ID: 6987246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fine structure of pronuclear development and fusion in the sea urchin, Arbacia punctulata.
    Longo FJ; Anderson E
    J Cell Biol; 1968 Nov; 39(2):339-68. PubMed ID: 5677969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochalasin B blocks sperm incorporation but allows activation of the sea urchin egg.
    Byrd W; Perry G
    Exp Cell Res; 1980 Apr; 126(2):333-42. PubMed ID: 7189151
    [No Abstract]   [Full Text] [Related]  

  • 9. Microfilaments during sea urchin fertilization: fluorescence detection with rhodaminyl phalloidin.
    Cline CA; Schatten G
    Gamete Res; 1986; 14():277-91. PubMed ID: 11540931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tubulin dynamics during the cytoplasmic cohesiveness cycle in artificially activated sea urchin eggs.
    Coffe G; Foucault G; Raymond MN; Pudles J
    Exp Cell Res; 1983 Dec; 149(2):409-18. PubMed ID: 6641809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The late events of fertilisation in the penaeoidean shrimp Sicyonia ingentis.
    Hertzler PL; Clark WH
    Zygote; 1993 Nov; 1(4):287-96. PubMed ID: 8081826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spiral array of microtubules in the fertilized sea urchin egg cortex examined by indirect immunofluorescence and electron microscopy.
    Harris P; Osborn M; Weber K
    Exp Cell Res; 1980 Mar; 126(1):227-36. PubMed ID: 6987070
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of antibodies against tubulin on the movement of reactivated sea urchin sperm flagella.
    Asai DJ; Brokaw CJ
    J Cell Biol; 1980 Oct; 87(1):114-23. PubMed ID: 7419586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1988; 11(4):248-59. PubMed ID: 3064924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly.
    Schatten G; Bestor T; Balczon R; Henson J; Schatten H
    Eur J Cell Biol; 1985 Jan; 36(1):116-27. PubMed ID: 4038941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excision and disassembly of sperm tail microtubules during sea urchin fertilization: requirements for microtubule dynamics.
    Fechter J; Schöneberg A; Schatten G
    Cell Motil Cytoskeleton; 1996; 35(4):281-8. PubMed ID: 8956000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transitions in histone variants of the male pronucleus following fertilization and evidence for a maternal store of cleavage-stage histones in the sera urchin egg.
    Poccia D; Salik J; Krystal G
    Dev Biol; 1981 Mar; 82(2):287-96. PubMed ID: 7227643
    [No Abstract]   [Full Text] [Related]  

  • 18. Rates of male pronuclear enlargement in sea urchin zygotes.
    Luttmer SJ; Longo FJ
    J Exp Zool; 1987 Aug; 243(2):289-98. PubMed ID: 3655686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recruitment of maternal material during assembly of the zygote centrosome in fertilized sea urchin eggs.
    Holy J; Schatten G
    Cell Tissue Res; 1997 Aug; 289(2):285-97. PubMed ID: 9211831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yields of tubulin paracrystals, vinblastine-crystals, induced in unfertilized and fertilized sea urchin eggs in the presence of D2O.
    Takahashi TC; Sato H
    Cell Struct Funct; 1984 Mar; 9(1):45-52. PubMed ID: 6722908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.