BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 7026540)

  • 1. Role of gene fadR in Escherichia coli acetate metabolism.
    Maloy SR; Nunn WD
    J Bacteriol; 1981 Oct; 148(1):83-90. PubMed ID: 7026540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation.
    Maloy SR; Bohlander M; Nunn WD
    J Bacteriol; 1980 Aug; 143(2):720-5. PubMed ID: 7009561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of aerobic acetate production by Escherichia coli.
    Farmer WR; Liao JC
    Appl Environ Microbiol; 1997 Aug; 63(8):3205-10. PubMed ID: 9251207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic regulation of the glyoxylate shunt in Escherichia coli K-12.
    Maloy SR; Nunn WD
    J Bacteriol; 1982 Jan; 149(1):173-80. PubMed ID: 7033207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli.
    Mainguet SE; Gronenberg LS; Wong SS; Liao JC
    Metab Eng; 2013 Sep; 19():116-27. PubMed ID: 23938029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role for fadR in unsaturated fatty acid biosynthesis in Escherichia coli.
    Nunn WD; Giffin K; Clark D; Cronan JE
    J Bacteriol; 1983 May; 154(2):554-60. PubMed ID: 6341354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion.
    Liu M; Ding Y; Chen H; Zhao Z; Liu H; Xian M; Zhao G
    BMC Microbiol; 2017 Jan; 17(1):10. PubMed ID: 28061812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulated expression of a repressor protein: FadR activates iclR.
    Gui L; Sunnarborg A; LaPorte DC
    J Bacteriol; 1996 Aug; 178(15):4704-9. PubMed ID: 8755903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of fatty acid degradation in Escherichia coli: isolation and characterization of strains bearing insertion and temperature-sensitive mutations in gene fadR.
    Simons RW; Egan PA; Chute HT; Nunn WD
    J Bacteriol; 1980 May; 142(2):621-32. PubMed ID: 6247326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of fatty acid degradation in Escherichia coli: fadR superrepressor mutants are unable to utilize fatty acids as the sole carbon source.
    Hughes KT; Simons RW; Nunn WD
    J Bacteriol; 1988 Apr; 170(4):1666-71. PubMed ID: 2895101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular Acidic pH Inhibits Acetate Consumption by Decreasing Gene Transcription of the Tricarboxylic Acid Cycle and the Glyoxylate Shunt.
    Orr JS; Christensen DG; Wolfe AJ; Rao CV
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30348831
    [No Abstract]   [Full Text] [Related]  

  • 12. Production of Succinate from Acetate by Metabolically Engineered Escherichia coli.
    Li Y; Huang B; Wu H; Li Z; Ye Q; Zhang YP
    ACS Synth Biol; 2016 Nov; 5(11):1299-1307. PubMed ID: 27088218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global regulatory mutations in csrA and rpoS cause severe central carbon stress in Escherichia coli in the presence of acetate.
    Wei B; Shin S; LaPorte D; Wolfe AJ; Romeo T
    J Bacteriol; 2000 Mar; 182(6):1632-40. PubMed ID: 10692369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of fadR and atoC(Con) mutations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in recombinant pha+ Escherichia coli.
    Rhie HG; Dennis D
    Appl Environ Microbiol; 1995 Jul; 61(7):2487-92. PubMed ID: 7618860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of long-chain fatty acids by Escherichia coli: mapping and characterization of mutants in the fadL gene.
    Nunn WD; Simons RW
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3377-81. PubMed ID: 356053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures.
    Renilla S; Bernal V; Fuhrer T; Castaño-Cerezo S; Pastor JM; Iborra JL; Sauer U; Cánovas M
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2109-24. PubMed ID: 21881893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of mutants of the yeast Yarrowia lipolytica defective in acetyl-coenzyme A synthetase.
    Kujau M; Weber H; Barth G
    Yeast; 1992 Mar; 8(3):193-203. PubMed ID: 1349449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the TCA cycle and the glyoxylate shunt in Escherichia coli BL21 and JM109 using (13)C-NMR/MS.
    Noronha SB; Yeh HJ; Spande TF; Shiloach J
    Biotechnol Bioeng; 2000 May; 68(3):316-27. PubMed ID: 10745200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of growth phase feeding strategies on succinate production by metabolically engineered Escherichia coli.
    Jiang M; Liu SW; Ma JF; Chen KQ; Yu L; Yue FF; Xu B; Wei P
    Appl Environ Microbiol; 2010 Feb; 76(4):1298-300. PubMed ID: 20038712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109).
    Phue JN; Shiloach J
    J Biotechnol; 2004 Apr; 109(1-2):21-30. PubMed ID: 15063611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.