BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 7026544)

  • 1. Studies on oxygen-insensitive nitrofuran reductase in Escherichia coli B/r.
    Tatsumi K; Doi T; Koga N; Yoshimura H; Koga H; Horiuchi T
    J Biochem; 1981 Mar; 89(3):855-9. PubMed ID: 7026544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen--insensitive nitrofuran reductases in Salmonella typhimurium TA100.
    Tatsumi K; Doi T; Yoshimura H; Koga H; Horiuchi T
    J Pharmacobiodyn; 1982 Jun; 5(6):423-9. PubMed ID: 6750079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type I nitroreductases of Escherichia coli.
    Bryant DW; McCalla DR; Leeksma M; Laneuville P
    Can J Microbiol; 1981 Jan; 27(1):81-6. PubMed ID: 7011517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on bacterial nitroreductases. Enzymes involved in reduction of aromatic nitro compounds in Escherichia coli.
    Kitamura S; Narai N; Tatsumi K
    J Pharmacobiodyn; 1983 Jan; 6(1):18-24. PubMed ID: 6343584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study on 1-nitropyrene and nitrofurazone reductases in Escherichia coli.
    Narai N; Kitamura S; Tatsumi K
    J Pharmacobiodyn; 1984 Jun; 7(6):407-13. PubMed ID: 6384469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrofuran reductase activity in nitrofurantoin-resistant strains of Escherichia coli K12: some with chromosomally determined resistance and others carrying R-plasmids.
    Breeze AS; Obaseiki-Ebor EE
    J Antimicrob Chemother; 1983 Dec; 12(6):543-7. PubMed ID: 6363380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on cis-trans isomerization of nitrofuran derivatives by bacterial nitroreductases.
    Koga N; Tatsumi K; Koga H; Horiuchi T; Yoshimura H
    J Pharmacobiodyn; 1984 Aug; 7(8):570-6. PubMed ID: 6392502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of nitrofuran reductases from Escherichia coli B/r.
    Doi T; Yoshimura H; Tatsumi K
    Chem Pharm Bull (Tokyo); 1983 Mar; 31(3):1105-7. PubMed ID: 6349841
    [No Abstract]   [Full Text] [Related]  

  • 9. Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain.
    Bouzon M; Döring V; Dubois I; Berger A; Stoffel GMM; Calzadiaz Ramirez L; Meyer SN; Fouré M; Roche D; Perret A; Erb TJ; Bar-Even A; Lindner SN
    mBio; 2021 Aug; 12(4):e0032921. PubMed ID: 34399608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824.
    Kutty R; Bennett GN
    Arch Microbiol; 2005 Nov; 184(3):158-67. PubMed ID: 16187099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hyperoxia on oxidized and reduced NAD and NADP concentrations in Escherichia coli.
    Brunker RL; Brown OR
    Microbios; 1971 Dec; 4(15):193-203. PubMed ID: 4147907
    [No Abstract]   [Full Text] [Related]  

  • 13. Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent Azo reductases.
    Rau J; Stolz A
    Appl Environ Microbiol; 2003 Jun; 69(6):3448-55. PubMed ID: 12788749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselective synthesis of (R)-phenylephrine using recombinant Escherichia coli cells expressing a novel short-chain dehydrogenase/reductase gene from Serratia marcescens BCRC 10948.
    Peng GJ; Kuan YC; Chou HY; Fu TK; Lin JS; Hsu WH; Yang MT
    J Biotechnol; 2014 Jan; 170():6-9. PubMed ID: 24291189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli.
    Whiteway J; Koziarz P; Veall J; Sandhu N; Kumar P; Hoecher B; Lambert IB
    J Bacteriol; 1998 Nov; 180(21):5529-39. PubMed ID: 9791100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the effects of NADH- and NADPH-perturbation stresses on the growth of Escherichia coli.
    Kim S; Moon DB; Lee CH; Nam SW; Kim P
    Curr Microbiol; 2009 Feb; 58(2):159-63. PubMed ID: 18953603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Two-/Four-Electron Reduction of Nitroaromatics by Oxygen-Insensitive Nitroreductases: The Role of a Non-Enzymatic Reduction Step.
    Valiauga B; Misevičienė L; Rich MH; Ackerley DF; Šarlauskas J; Čėnas N
    Molecules; 2018 Jul; 23(7):. PubMed ID: 29987261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escherichia coli pyridine I-oxide reductase.
    Kester M; Norton SJ
    Biochim Biophys Acta; 1972 Mar; 258(3):709-18. PubMed ID: 4401572
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.