These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7026566)

  • 41. Activity determination of 3-iodopyridineadenine dinucleotide and its phosphate as hydride acceptors in the presence of dehydrogenases using a coupled redox system.
    Abdallah MA; Biellmann JF
    Eur J Biochem; 1980 Nov; 112(2):331-3. PubMed ID: 7007042
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inactivation of ribulosebisphosphate carboxylase by modification of arginyl residues with phenylglyoxal.
    Schloss JV; Norton IL; Stringer CD; Hartman FC
    Biochemistry; 1978 Dec; 17(26):5626-31. PubMed ID: 728421
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phenylglyoxal modification of cardiac myosin S-1. Evidence for essential arginine residues at the active site.
    Morkin E; Flink IL; Banerjee SK
    J Biol Chem; 1979 Dec; 254(24):12647-52. PubMed ID: 159307
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Arginine-selective bioconjugation with 4-azidophenyl glyoxal: application to the single and dual functionalisation of native antibodies.
    Dovgan I; Erb S; Hessmann S; Ursuegui S; Michel C; Muller C; Chaubet G; Cianférani S; Wagner A
    Org Biomol Chem; 2018 Feb; 16(8):1305-1311. PubMed ID: 29388667
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enzyme activity in the myocardium in experimental hypertension.
    Nagano M; Kogure T; Kawamura M; Tomizuka S; Kawanishi M
    Jpn Heart J; 1968 Jan; 9(1):57-63. PubMed ID: 4231751
    [No Abstract]   [Full Text] [Related]  

  • 46. Immobilization of enzymes and affinity ligands to various hydroxyl group carrying supports using highly reactive sulfonyl chlorides.
    Nilsson K; Mosbach K
    Biochem Biophys Res Commun; 1981 Sep; 102(1):449-57. PubMed ID: 6272796
    [No Abstract]   [Full Text] [Related]  

  • 47. Inactivation of histidine ammonia-lyase from Streptomyces griseus by dicarbonyl reagents.
    White PJ; Kendrick KE
    Biochim Biophys Acta; 1993 Jun; 1163(3):273-9. PubMed ID: 8507666
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence for an exceptionally reactive arginyl residue at the binding site for carbamyl phosphate in bovine ornithine transcarbamylase.
    Marshall M; Cohen PP
    J Biol Chem; 1980 Aug; 255(15):7301-5. PubMed ID: 7391082
    [No Abstract]   [Full Text] [Related]  

  • 49. Photoaffinity labelling of lactate dehydrogenase from pig heart with a bifunctional NAD(+)-analogue.
    Becker S; Bergman T; Hjelmqvist L; Jeck R; Jörnvall H; Leibrock H; Woenckhaus C
    Biochim Biophys Acta; 1996 Apr; 1293(2):277-83. PubMed ID: 8620041
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of liver prenyl transferase and its inactivation by phenylglyoxal.
    Barnard GF; Popják G
    Biochim Biophys Acta; 1980 Feb; 617(2):169-82. PubMed ID: 7357016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recycling by a second enzyme of NAD covalently bound to alcohol dehydrogenase.
    Månsson MO; Larsson PO; Mosbach K
    FEBS Lett; 1979 Feb; 98(2):309-13. PubMed ID: 217734
    [No Abstract]   [Full Text] [Related]  

  • 52. Reassociation of lactic dehydrogenase from pig heart studied by cross-linking with glutaraldehyde.
    Bernhardt G; Rudolph R; Jaenicke R
    Z Naturforsch C Biosci; 1981; 36(9-10):772-7. PubMed ID: 6795844
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The presence of essential arginine residues at the NADPH-binding sites of beta-ketoacyl reductase and enoyl reductase domains of the multifunctional fatty acid synthetase of chicken liver.
    Vernon CM; Hsu RY
    Biochim Biophys Acta; 1984 Jul; 788(1):124-31. PubMed ID: 6378254
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Reactivity and specificity of alpha-dicarbonyl compounds towards essential aminoacyl residues of D-beta-hydroxybutyrate dehydrogenase from the inner mitochondrial membrane].
    Latruffe N; El Kebbaj MS; Schmitt G; Gaudemer Y
    C R Seances Soc Biol Fil; 1980; 174(6):1053-9. PubMed ID: 6451266
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of methylglyoxal on the glycolytic enzymes.
    Leoncini G; Maresca M; Bonsignore A
    FEBS Lett; 1980 Aug; 117(1):17-8. PubMed ID: 6250891
    [No Abstract]   [Full Text] [Related]  

  • 56. Release of enzymes from the liver.
    Schmidt E; Schmidt FW
    Nature; 1967 Mar; 213(5081):1125-6. PubMed ID: 4291507
    [No Abstract]   [Full Text] [Related]  

  • 57. [Enzymes of fructose metabolism. Activity and distribution in the rat liver].
    Heinz F; Lamprecht W
    Hoppe Seylers Z Physiol Chem; 1967 Jul; 348(7):855-63. PubMed ID: 4298581
    [No Abstract]   [Full Text] [Related]  

  • 58. Changes in enzyme pattern of infarcted heart muscle during tissue repair.
    Gudbjarnason S; Cowan C; Braasch W; Bing RJ
    Cardiologia (Basel); 1967; 51(3):148-59. PubMed ID: 5599935
    [No Abstract]   [Full Text] [Related]  

  • 59. Letter: Flourescent products from irradiated amino acids and proteins.
    Adhikari HR; Tappel AL
    Radiat Res; 1975 Jan; 61(1):177-83. PubMed ID: 1089254
    [No Abstract]   [Full Text] [Related]  

  • 60. Functional arginyl residues as ATP binding sites of glutamine synthetase and carbamyl phosphate synthetase.
    Powers SG; Riordan JF
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2616-20. PubMed ID: 241076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.