These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 7027952)

  • 1. Fermentation by the human large intestine microbial community in an in vitro semicontinuous culture system.
    Miller TL; Wolin MJ
    Appl Environ Microbiol; 1981 Sep; 42(3):400-7. PubMed ID: 7027952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consequences of biofilm and sessile growth in the large intestine.
    Macfarlane S; McBain AJ; Macfarlane GT
    Adv Dent Res; 1997 Apr; 11(1):59-68. PubMed ID: 9524443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of a preparation of Saccharomyces cerevisiae on microbial profiles and fermentation patterns in the large intestine of horses fed a high fiber or a high starch diet.
    Medina B; Girard ID; Jacotot E; Julliand V
    J Anim Sci; 2002 Oct; 80(10):2600-9. PubMed ID: 12413082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual Sphaerophorus species from the large intestine of man.
    Pearson TA; Balish E
    Appl Microbiol; 1970 Mar; 19(3):458-62. PubMed ID: 4314840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and identification of intestinal bacteria from Japanese tree frog (Hlya japonica) with the special reference to anaerobic bacteria.
    Benno Y; Izumi-Kurotani A; Yamashita M
    J Vet Med Sci; 1992 Aug; 54(4):699-702. PubMed ID: 1391180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro fermentation properties of selected fructooligosaccharide-containing vegetables and in vivo colonic microbial populations are affected by the diets of healthy human infants.
    Flickinger EA; Hatch TF; Wofford RC; Grieshop CM; Murray SM; Fahey GC
    J Nutr; 2002 Aug; 132(8):2188-94. PubMed ID: 12163660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of intestinal bacteria in nutrient metabolism.
    Cummings JH; Macfarlane GT
    JPEN J Parenter Enteral Nutr; 1997; 21(6):357-65. PubMed ID: 9406136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonstarch polysaccharide-degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract.
    Bindelle J; Pieper R; Montoya CA; Van Kessel AG; Leterme P
    FEMS Microbiol Ecol; 2011 Jun; 76(3):553-63. PubMed ID: 21348887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic bacteria from the large intestine of mice.
    Harris MA; Reddy CA; Carter GR
    Appl Environ Microbiol; 1976 Jun; 31(6):907-12. PubMed ID: 938042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy and reproducibility of the 4-hour ATB 32A method for anaerobe identification.
    Kitch TT; Appelbaum PC
    J Clin Microbiol; 1989 Nov; 27(11):2509-13. PubMed ID: 2681252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic bacteriology in the clinical laboratory.
    Marymont JH; Holdeman LV; Moore WE
    Am J Med Technol; 1972 Nov; 38(11):441-6. PubMed ID: 4563219
    [No Abstract]   [Full Text] [Related]  

  • 13. Anaerobic bacteria: their recognition and significance in the clinical laboratory.
    Sutter VL; Finegold SM
    Prog Clin Pathol; 1973; 5():219-38. PubMed ID: 4592959
    [No Abstract]   [Full Text] [Related]  

  • 14. Enumeration and isolation of cellulolytic and hemicellulolytic bacteria from human feces.
    Wedekind KJ; Mansfield HR; Montgomery L
    Appl Environ Microbiol; 1988 Jun; 54(6):1530-5. PubMed ID: 3415224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of PRAS II, RapID ANA, and API 20A systems for identification of anaerobic bacteria.
    Karachewski NO; Busch EL; Wells CL
    J Clin Microbiol; 1985 Jan; 21(1):122-6. PubMed ID: 3881468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites.
    McBain AJ; Macfarlane GT
    J Med Microbiol; 1998 May; 47(5):407-16. PubMed ID: 9879941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of banana powder (Musa acuminata Colla) on the composition of human fecal microbiota and metabolic output using in vitro fermentation.
    Tian DD; Xu XQ; Peng Q; Zhang YW; Zhang PB; Qiao Y; Shi B
    J Food Sci; 2020 Aug; 85(8):2554-2564. PubMed ID: 32677055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adding mucins to an in vitro batch fermentation model of the large intestine induces changes in microbial population isolated from porcine feces depending on the substrate.
    Tran TH; Boudry C; Everaert N; Théwis A; Portetelle D; Daube G; Nezer C; Taminiau B; Bindelle J
    FEMS Microbiol Ecol; 2016 Feb; 92(2):. PubMed ID: 26691596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of anaerobic bacteria from vented blood-culture bottles.
    Martin WJ; Wilhelm PA; Bruckner D
    Rev Infect Dis; 1984; 6 Suppl 1():S59-61. PubMed ID: 6372038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria.
    Fu X; Liu Z; Zhu C; Mou H; Kong Q
    Crit Rev Food Sci Nutr; 2019; 59(sup1):S130-S152. PubMed ID: 30580556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.