These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 7027952)

  • 41. Comparison of four microbial enzymes in Clostridia and Bacteroides isolated from human feces.
    Nakamura J; Kubota Y; Miyaoka M; Saitoh T; Mizuno F; Benno Y
    Microbiol Immunol; 2002; 46(7):487-90. PubMed ID: 12222935
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recovery of anaerobic bacteria from clinical specimens in 12 years at two military hospitals.
    Brook I
    J Clin Microbiol; 1988 Jun; 26(6):1181-8. PubMed ID: 3384929
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation of anaerobic bacteria from clinical specimens.
    Zabransky RJ
    Mayo Clin Proc; 1970 Apr; 45(4):256-64. PubMed ID: 4314713
    [No Abstract]   [Full Text] [Related]  

  • 44. Effects of dietary fibers with different physicochemical properties on fermentation kinetics and microbial composition by fecal inoculum from lactating sows in vitro.
    Pi Y; Hu J; Bai Y; Wang Z; Wu Y; Ye H; Zhang S; Tao S; Xiao Y; Han D; Ni D; Zou X; Wang J
    J Sci Food Agric; 2021 Feb; 101(3):907-917. PubMed ID: 32737882
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Clinical characteristics and antimicrobial susceptibilities of anaerobic bacteremia in an acute care hospital.
    Tan TY; Ng LS; Kwang LL; Rao S; Eng LC
    Anaerobe; 2017 Feb; 43():69-74. PubMed ID: 27890724
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with
    Miguel M; Lee SS; Mamuad L; Choi YJ; Jeong CD; Son A; Cho KK; Kim ET; Kim SB; Lee SS
    J Microbiol Biotechnol; 2019 Jul; 29(7):1083-1095. PubMed ID: 31216841
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Copper sulfate and sodium selenite lipid-microencapsulation modifies ruminal microbial fermentation in a dual-flow continuous-culture system.
    Arce-Cordero JA; Monteiro HF; Lelis AL; Lima LR; Restelatto R; Brandao VLN; Leclerc H; Vyas D; Faciola AP
    J Dairy Sci; 2020 Aug; 103(8):7068-7080. PubMed ID: 32505403
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora.
    Pylkas AM; Juneja LR; Slavin JL
    J Med Food; 2005; 8(1):113-6. PubMed ID: 15857221
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Small intestinal malabsorption and colonic fermentation of resistant starch and resistant peptides to short-chain fatty acids.
    Nordgaard I; Mortensen PB; Langkilde AM
    Nutrition; 1995; 11(2):129-37. PubMed ID: 7544175
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amounts of viable anaerobes, methanogens, and bacterial fermentation products in feces of rats fed high-fiber or fiber-free diets.
    Maczulak AE; Wolin MJ; Miller TL
    Appl Environ Microbiol; 1993 Mar; 59(3):657-62. PubMed ID: 8386916
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Different concentrations of grape seed extract affect in vitro starch fermentation by porcine small and large intestinal inocula.
    Wang D; Williams BA; Ferruzzi MG; D'Arcy BR
    J Sci Food Agric; 2013 Jan; 93(2):276-83. PubMed ID: 22777827
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro fermentation of lupin seeds (Lupinus albus) and broad beans (Vicia faba): dynamic modulation of the intestinal microbiota and metabolomic output.
    Gullón P; Gullón B; Tavaria F; Vasconcelos M; Gomes AM
    Food Funct; 2015 Oct; 6(10):3316-22. PubMed ID: 26252418
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fructan extracts from wheat stem and barley grain stimulate large bowel fermentation in rats.
    Belobrajdic DP; Jenkins CL; Bushell R; Morell MK; Bird AR
    Nutr Res; 2012 Aug; 32(8):599-606. PubMed ID: 22935343
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Maintenance of the rumen microbial population in continuous culture.
    RUFENER WH; NELSON WO; WOLIN MJ
    Appl Microbiol; 1963 May; 11(3):196-201. PubMed ID: 13983185
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of different vegetable wastes on the performance of volatile fatty acids production by anaerobic fermentation.
    Zhang Q; Lu Y; Zhou X; Wang X; Zhu J
    Sci Total Environ; 2020 Dec; 748():142390. PubMed ID: 33113691
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro fermentation of various fiber and starch sources by pig fecal inocula.
    Wang JF; Zhu YH; Li DF; Wang Z; Jensen BB
    J Anim Sci; 2004 Sep; 82(9):2615-22. PubMed ID: 15446478
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of anaerobic spore-forming bacteria in the acidogenesis of glucose: changes induced by discontinuous or low-rate feed supply.
    Cohen A; Distel B; van Deursen A; Breure AM; van Andel JG
    Antonie Van Leeuwenhoek; 1985; 51(2):179-92. PubMed ID: 3929685
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro colonic fermentation of Mexican "taco" from corn-tortilla and black beans in a Simulator of Human Microbial Ecosystem (SHIME®) system.
    Cárdenas-Castro AP; Bianchi F; Tallarico-Adorno MA; Montalvo-González E; Sáyago-Ayerdi SG; Sivieri K
    Food Res Int; 2019 Apr; 118():81-88. PubMed ID: 30898356
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows.
    Olijhoek DW; Hellwing ALF; Brask M; Weisbjerg MR; Højberg O; Larsen MK; Dijkstra J; Erlandsen EJ; Lund P
    J Dairy Sci; 2016 Aug; 99(8):6191-6205. PubMed ID: 27236758
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of techniques for isolation and identification of anaerobic bacteria.
    Dowell VR
    Am J Clin Nutr; 1972 Dec; 25(12):1335-43. PubMed ID: 4565351
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.