These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 7028105)
1. Effect of transfer ribonucleic acid dimer formation on polyphenylalanine biosynthesis. Miller DL; Yamane T; Hopfield JJ Biochemistry; 1981 Sep; 20(19):5457-61. PubMed ID: 7028105 [TBL] [Abstract][Full Text] [Related]
2. Interaction of elongation factor Tu with the aminoacyl transfer ribonucleic acid dimer Phe-tRNA-Glu-tRNA. Yamane T; Miller DL; Hopfield JJ Biochemistry; 1981 Jan; 20(2):449-52. PubMed ID: 7008845 [TBL] [Abstract][Full Text] [Related]
3. [Binding of the yeast phenylalanine tRNA with Escherichia coli ribosomes. Effect of the removal of a modified base from the 3'-end of the anticodon on codon-anticodon interaction]. Katunin VI; Kirillov SV Mol Biol (Mosk); 1984; 18(6):1486-96. PubMed ID: 6084167 [TBL] [Abstract][Full Text] [Related]
4. Selective binding of amino acid residues to tRNA molecules detected by anticodon-anticodon interactions. Bujalowski W; Porschke D Z Naturforsch C J Biosci; 1988; 43(1-2):91-8. PubMed ID: 3287785 [TBL] [Abstract][Full Text] [Related]
5. [Mechanism of codon-anticodon interaction in ribosomes. Interaction of aminoacyl-tRNA with 70S ribosomes in the absence of elongation factor EF-Tu and GTP]. Kemkhadze KSh; Odintsov VB; Makhno VI; Semenkov IuP; Kirillov SV Mol Biol (Mosk); 1981; 15(4):779-89. PubMed ID: 6912382 [TBL] [Abstract][Full Text] [Related]
6. Anticodon-anticodon interactions in solution. Studies of the self-association of yeast or Escherichia coli tRNAAsp and of their interactions with Escherichia coli tRNAVal. Romby P; Giegé R; Houssier C; Grosjean H J Mol Biol; 1985 Jul; 184(1):107-118. PubMed ID: 2411934 [TBL] [Abstract][Full Text] [Related]
7. Effect of ribosome binding and translocation on the anticodon of tRNAPhe as studied by wybutine fluorescence. Paulsen H; Robertson JM; Wintermeyer W Nucleic Acids Res; 1982 Apr; 10(8):2651-63. PubMed ID: 7043399 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of codon-anticodon interaction in ribosomes. Direct functional evidence that isolated 30S subunits contain two codon-specific binding sites for transfer RNA. Kirillov SV; Makhno VI; Semenkov YP Nucleic Acids Res; 1980 Jan; 8(1):183-96. PubMed ID: 6986612 [TBL] [Abstract][Full Text] [Related]
9. Comparison of ribosomal entry and acceptor transfer ribonucleic acid binding sites on Escherichia coli 70S ribosomes. Fluorescence energy transfer measurements from Phe-tRNAPhe to the 3' end of 16S ribonucleic acid. Robbins D; Hardesty B Biochemistry; 1983 Nov; 22(24):5675-9. PubMed ID: 6197085 [TBL] [Abstract][Full Text] [Related]
10. Initiation of in vivo protein synthesis with non-methionine amino acids. Chattapadhyay R; Pelka H; Schulman LH Biochemistry; 1990 May; 29(18):4263-8. PubMed ID: 2112406 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631 [TBL] [Abstract][Full Text] [Related]
12. Binding of yeast tRNAPhe anticodon arm to Escherichia coli 30 S ribosomes. Rose SJ; Lowary PT; Uhlenbeck OC J Mol Biol; 1983 Jun; 167(1):103-17. PubMed ID: 6345793 [TBL] [Abstract][Full Text] [Related]
13. Affinities of tRNA binding sites of ribosomes from Escherichia coli. Lill R; Robertson JM; Wintermeyer W Biochemistry; 1986 Jun; 25(11):3245-55. PubMed ID: 3524675 [TBL] [Abstract][Full Text] [Related]
14. The effect of point mutations affecting Escherichia coli tryptophan tRNA on anticodon-anticodon interactions and on UGA suppression. Vacher J; Grosjean H; Houssier C; Buckingham RH J Mol Biol; 1984 Aug; 177(2):329-42. PubMed ID: 6379198 [TBL] [Abstract][Full Text] [Related]
15. Template-free ribosomal synthesis of polypeptides from aminoacyl-tRNA. Polyphenylalanine synthesis from phenylalanyl-tRNALys. Yusupova GZ; Belitsina NV; Spirin AS FEBS Lett; 1986 Sep; 206(1):142-6. PubMed ID: 3530807 [TBL] [Abstract][Full Text] [Related]
16. Aminoacyl-tRNA-elongation factor Tu-ribosome interaction leading to hydrolysis of guanosine 5'-triphosphate. Takahashi K; Ghag S; Chládek S Biochemistry; 1986 Dec; 25(25):8330-6. PubMed ID: 3545292 [TBL] [Abstract][Full Text] [Related]
17. Cross-linking of the anticodon of Escherichia coli and Bacillus subtilis acetylvalyl-tRNA to the ribosomal P site. Characterization of a unique site in both E. coli 16S and yeast 18S ribosomal RNA. Ehresmann C; Ehresmann B; Millon R; Ebel JP; Nurse K; Ofengand J Biochemistry; 1984 Jan; 23(3):429-37. PubMed ID: 6422982 [TBL] [Abstract][Full Text] [Related]
18. Properties of tRNA species modified in the 3'-terminal ribose moiety in an eukaryotic ribosomal system. Baksht E; de Groot N; Sprinzl M; Cramer F Biochemistry; 1976 Aug; 15(16):3639-46. PubMed ID: 782520 [TBL] [Abstract][Full Text] [Related]
19. Rate of elongation of polyphenylalanine in vitro. Wagner EG; Jelenc PC; Ehrenberg M; Kurland CG Eur J Biochem; 1982 Feb; 122(1):193-7. PubMed ID: 7037399 [TBL] [Abstract][Full Text] [Related]
20. Transient kinetics of transfer ribonucleic acid binding to the ribosomal A and P sites: observation of a common intermediate complex. Wintermeyer W; Robertson JM Biochemistry; 1982 Apr; 21(9):2246-52. PubMed ID: 7046798 [No Abstract] [Full Text] [Related] [Next] [New Search]