BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 7028128)

  • 21. Differences in the pathways for unfolding and hydrogen exchange among mutants of Escherichia coli alkaline phosphatase.
    Fischer CJ; Schauerte JA; Wisser KC; Steel DG; Gafni A
    Biochim Biophys Acta; 2001 Feb; 1545(1-2):96-103. PubMed ID: 11342035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of multitryptophan protein with drug: an insight into the binding mechanism and the binding domain by time resolved emission, anisotropy, phosphorescence and docking.
    Mukherjee M; Sardar PS; Ghorai SK; Samanta SK; Roy AS; Dasgupta S; Ghosh S
    J Photochem Photobiol B; 2012 Oct; 115():93-104. PubMed ID: 22884693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the two tryptophan residues of the lactose repressor from Escherichia coli by phosphorescence and optical detection of magnetic resonance.
    Burns LE; Maki AH; Spotts R; Matthews KS
    Biochemistry; 1993 Nov; 32(47):12821-9. PubMed ID: 8251503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tryptophan phosphorescence of the Ca2+-ATPase of sarcoplasmic reticulum.
    Vanderkooi JM; Papp S; Pikula S; Martonosi A
    Biochim Biophys Acta; 1988 Nov; 957(2):230-6. PubMed ID: 2973355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorescence measurements of calf gamma-II, III, and IV crystallins at 77 and 293 K.
    Berger JW; Vanderkooi JM; Tallmadge DH; Borkman RF
    Exp Eye Res; 1989 May; 48(5):627-39. PubMed ID: 2737261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Isolation and preliminary characterization of mutants of Escherichia coli K-12 overproducers of 2 exported proteins: beta-lactamase and alkaline phosphatase].
    Magnouloux-Blanc B; Portalier R
    C R Acad Sci III; 1988; 307(6):323-8. PubMed ID: 3144421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the time-resolved absorption and phosphorescence from the tryptophan triplet state in proteins in solution.
    Gershenson A; Gafni A; Steel D
    Photochem Photobiol; 1998 Apr; 67(4):391-8. PubMed ID: 9559583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic and genetic control of isoenzyme spectrum of alkaline phosphatase in Escherichia coli.
    Nesmeyanova MA; Marayeva OB; Severin AI; Kulayev IS
    Folia Microbiol (Praha); 1978; 23(1):30-6. PubMed ID: 146652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of tryptophan environments in glutamate dehydrogenases from temperature-dependent phosphorescence.
    Strambini GB; Cioni P; Felicioli RA
    Biochemistry; 1987 Aug; 26(16):4968-75. PubMed ID: 3663638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quenching of alkaline phosphatase phosphorescence by O2 and NO. Evidence for inflexible regions of protein structure.
    Strambini GB
    Biophys J; 1987 Jul; 52(1):23-8. PubMed ID: 3300801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 4-Fluorotryptophan alkaline phosphatase from E. coli: preparation, properties, and 19F NMR spectrum.
    Browne DT; Otvos JD
    Biochem Biophys Res Commun; 1976 Feb; 68(3):907-13. PubMed ID: 769791
    [No Abstract]   [Full Text] [Related]  

  • 33. Isolation of unselected mutants of alkaline phosphatase in Escherichia coli through nitrosoguanidine comutation and comparison with natural variants.
    del Castillo F; Cerdá-Olmedo E
    Biochem Genet; 1984 Jun; 22(5-6):467-82. PubMed ID: 6380492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tryptophan phosphorescence signals characteristic changes in protein dynamics at physiological temperatures.
    Tölgyesi F; Ullrich B; Fidy J
    Biochim Biophys Acta; 1999 Nov; 1435(1-2):1-6. PubMed ID: 10561532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Ala-161-->Thr substitution in Escherichia coli alkaline phosphatase does not result in loss of enzymatic activity although the homologous mutation in humans causes hypophosphatasia.
    Chaidaroglou A; Kantrowitz ER
    Biochem Biophys Res Commun; 1993 Jun; 193(3):1104-9. PubMed ID: 8323535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain.
    Bódis E; Strambini GB; Gonnelli M; Málnási-Csizmadia A; Somogyi B
    Biophys J; 2004 Aug; 87(2):1146-54. PubMed ID: 15298917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of amino acid analogues on alkaline phosphatase. Formation in Escherichia coli K-12. II. Replacement of tryptophan by azatryptophan and by tryptazan.
    Schlesinger S
    J Biol Chem; 1968 Jul; 243(14):3877-83. PubMed ID: 4873680
    [No Abstract]   [Full Text] [Related]  

  • 39. [Effect of mutations in regulatory genes for alkaline phosphatase on the phosphohydrolase spectrum of E. coli periplasm].
    Maraeva OB; Nesmeiapova MA; Kulaev IS
    Biokhimiia; 1978 Sep; 43(9):1640-7. PubMed ID: 214171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lack of correspondence between the room-temperature phosphorescence decay-components and Trp residues in a series of Trp-->Cys or Trp-->Phe mutants of human carbonic anhydrase II.
    Bergenhem NC; Schlyer BD; Steel DG; Gafni A; Carlsson U; Jonsson BH
    FEBS Lett; 1994 Oct; 353(2):177-9. PubMed ID: 7926047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.