These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7028287)

  • 1. A colorimetric determination of total glutathione based on its C-terminal glycine residue and its application to blood, liver, and yeast.
    Ohmori S; Ikeda M; Kasahara E; Hyodoh H; Hirota K
    Chem Pharm Bull (Tokyo); 1981 May; 29(5):1355-60. PubMed ID: 7028287
    [No Abstract]   [Full Text] [Related]  

  • 2. Primary structures of ribosomal protein YS25 from Saccharomyces cerevisiae and its counterparts from Schizosaccharomyces pombe and rat liver.
    Itoh T; Otaka E; Matsui KA
    Biochemistry; 1985 Dec; 24(25):7418-23. PubMed ID: 3910104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid colorimetric determination of reduced and oxidized glutathione using an end point coupled enzymatic assay.
    Cappiello M; Peroni E; Lepore A; Moschini R; Del Corso A; Balestri F; Mura U
    Anal Bioanal Chem; 2013 Feb; 405(5):1779-85. PubMed ID: 23203508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Colorimetric determination of 4-chloro-2-(o-chlorobenzoyl)-N-methyl-N alpha-glycylglycinanilide with 3,5-dibromsalicyladehyde (author's transl)].
    Ikenishi R; Kitagawa T; Hirai E
    Yakugaku Zasshi; 1981 Jun; 101(6):532-7. PubMed ID: 6118425
    [No Abstract]   [Full Text] [Related]  

  • 5. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues.
    Tietze F
    Anal Biochem; 1969 Mar; 27(3):502-22. PubMed ID: 4388022
    [No Abstract]   [Full Text] [Related]  

  • 6. A direct enzymic method for the determination of reduced glutathione in blood and other tissues.
    Crowley C; Gillham B; Thorn MB
    Biochem Med; 1975 Jul; 13(3):287-92. PubMed ID: 1203068
    [No Abstract]   [Full Text] [Related]  

  • 7. [Methods of glutathione determination in biological material].
    Harisch G; Schole J
    Strahlentherapie; 1971 Oct; 142(4):494-501. PubMed ID: 5125971
    [No Abstract]   [Full Text] [Related]  

  • 8. Conjugated polyelectrolyte as a colorimetric and fluorescent probe for the detection of glutathione.
    Yao Z; Feng X; Li C; Shi G
    Chem Commun (Camb); 2009 Oct; (39):5886-8. PubMed ID: 19787130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dots for naked eye colorimetric ultrasensitive arsenic and glutathione detection.
    Gupta A; Verma NC; Khan S; Nandi CK
    Biosens Bioelectron; 2016 Jul; 81():465-472. PubMed ID: 27015150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric determination of succinic acid using yeast succinate dehydrogenase.
    Valle AB; Panek AD; Mattoon JR
    Anal Biochem; 1978 Dec; 91(2):583-99. PubMed ID: 9762145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonenzymatic colorimetric assay of glutathione in the presence of other mercaptans.
    Chaudiere J; Aguini N; Yadan JC
    Methods Enzymol; 1999; 299():276-86. PubMed ID: 9916206
    [No Abstract]   [Full Text] [Related]  

  • 12. A colorimetric indicator-displacement assay array for selective detection and identification of biological thiols.
    Qian S; Lin H
    Anal Bioanal Chem; 2014 Mar; 406(7):1903-8. PubMed ID: 24442012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination and characterization of long-chain fatty acyl-CoA thioesters from yeast and mammalian liver.
    Olbrich A; Dietl B; Lynen F
    Anal Biochem; 1981 May; 113(2):386-97. PubMed ID: 7025701
    [No Abstract]   [Full Text] [Related]  

  • 14. A general, fast, and sensitive micromethod for DNA determination application to rat and mouse liver, rat hepatoma, human leukocytes, chicken fibroblasts, and yeast cells.
    Fiszer-Szafarz B; Szafarz D; Guevara de Murillo A
    Anal Biochem; 1981 Jan; 110(1):165-70. PubMed ID: 7011093
    [No Abstract]   [Full Text] [Related]  

  • 15. [Glutathione status and malondialdehyde content in the liver and blood of the rat in the course of reversible and irreversible endotoxic shock].
    Kopprasch S; Hörkner U; Scheuch DW
    Z Med Lab Diagn; 1988; 29(6):309-13. PubMed ID: 3188607
    [No Abstract]   [Full Text] [Related]  

  • 16. The primary structure of yeast histone H3.
    Brandt WF; von Holt C
    Eur J Biochem; 1982 Jan; 121(3):501-10. PubMed ID: 7035169
    [No Abstract]   [Full Text] [Related]  

  • 17. Fluorescence turn-on and colorimetric dual readout assay of glutathione over cysteine based on the fluorescence inner-filter effect of oxidized TMB on TMPyP.
    Jiang X; Geng F; Wang Y; Liu J; Qu P; Xu M
    Biosens Bioelectron; 2016 Jul; 81():268-273. PubMed ID: 26971272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new strategy for improved glutathione production from Saccharomyces cerevisiae: use of cysteine- and glycine-rich chicken feather protein hydrolysate as a new cheap substrate.
    Taskin M
    J Sci Food Agric; 2013 Feb; 93(3):535-41. PubMed ID: 22865342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of glyoxalase I purified from yeast (Saccharomyces cerevisiae) with the enzyme from mammalian sources.
    Marmstål E; Aronsson AC; Mannervik B
    Biochem J; 1979 Oct; 183(1):23-30. PubMed ID: 393249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of salicylates and phenobarbital on hepatic glutathione in the rat.
    Kaplowitz N; Kuhlenkamp J; Goldstein L; Reeve J
    J Pharmacol Exp Ther; 1980 Feb; 212(2):240-5. PubMed ID: 7351635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.