These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7028493)

  • 1. Triphenylmethylphosphonium uptake by pancreatic islet cells.
    Sehlin J; Täljedal IB
    Exp Cell Res; 1981 Nov; 136(1):147-56. PubMed ID: 7028493
    [No Abstract]   [Full Text] [Related]  

  • 2. On the metaphysics of membrane potential in islet cells: studies with triphenylmethylphosphonium.
    Täljedal IB
    Ups J Med Sci; 1981; 86(2):171-6. PubMed ID: 7034347
    [No Abstract]   [Full Text] [Related]  

  • 3. Measurement of the membrane potential of isolated nerve terminals by the lipophilic cation [3H]triphenylmethylphosphonium bromide.
    Hansson E; Jacobson I; Venema R; Sellström A
    J Neurochem; 1980 Mar; 34(3):569-73. PubMed ID: 7354332
    [No Abstract]   [Full Text] [Related]  

  • 4. On insulin secretion.
    Täljedal IB
    Diabetologia; 1981 Jul; 21(1):1-17. PubMed ID: 7024025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of membrane potential of chromaffin granules by the accumulation of triphenylmethylphosphonium cation.
    Holz RW
    J Biol Chem; 1979 Jul; 254(14):6703-9. PubMed ID: 582174
    [No Abstract]   [Full Text] [Related]  

  • 6. Platelet 5-hydroxytryptamine transport, an electroneutral mechanism coupled to potassium.
    Rudnick G; Nelson PJ
    Biochemistry; 1978 Oct; 17(22):4739-42. PubMed ID: 728383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of [3H]triphenylmethylphosphonium cation for estimating membrane potential in neuroblastoma cells.
    Milligan G; Strange PG
    J Neurochem; 1984 Dec; 43(6):1515-21. PubMed ID: 6491666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choline transport into rat liver mitochondria.
    Porter RK; Scott JM; Brand MD
    Biochem Soc Trans; 1992 Aug; 20(3):248S. PubMed ID: 1426542
    [No Abstract]   [Full Text] [Related]  

  • 9. [Erroneous use of lipophilic phosphonic cations for determining mitochondrial membrane potential].
    Skul'skiĭ IA; Glazunov VV
    Tsitologiia; 1981 Apr; 23(4):458-60. PubMed ID: 7256848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction in accumulation of [3H]triphenylmethylphosphonium cation in neuroblastoma cells caused by optical probes of membrane potential. Evidence for interactions between carbocyanine dyes and lipophilic anions.
    Milligan G; Strange PG
    Biochim Biophys Acta; 1983 Jul; 762(4):585-92. PubMed ID: 6871253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane potential and active transport in membrane vesicles from Escherichia coli.
    Schuldiner S; Kaback HR
    Biochemistry; 1975 Dec; 14(25):5451-61. PubMed ID: 172125
    [No Abstract]   [Full Text] [Related]  

  • 12. Membrane potential and neutral amino acid transport in plasma membrane vesicles from Simian virus 40 transformed mouse fibroblasts.
    Lever JE
    Biochemistry; 1977 Sep; 16(19):4328-34. PubMed ID: 197993
    [No Abstract]   [Full Text] [Related]  

  • 13. Measurement of membrane potentials (psi) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation.
    Cheng K; Haspel HC; Vallano ML; Osotimehin B; Sonenberg M
    J Membr Biol; 1980 Oct; 56(3):191-201. PubMed ID: 6779011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some characteristics of tetraphenylphosphonium uptake into Saccharomyces cerevisiae.
    Boxman AW; Barts PW; Borst-Pauwels GW
    Biochim Biophys Acta; 1982 Mar; 686(1):13-8. PubMed ID: 7039677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chromate ion on the membrane of established human cells as measured by uptake of a permeant lipophilic cation.
    Brun EC; White LR; Eik-Nes KB
    Toxicol Lett; 1987 Feb; 35(2-3):253-9. PubMed ID: 3824414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Active transport of triphenylmethylphosphonium in mitochondria].
    Skul'skiĭ IA; Glazunov VV; Baklanova SM
    Biofizika; 1982; 27(3):480-4. PubMed ID: 7093333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light changes the membrane potential and ion balances of retinal rod disks.
    Hughes SM; Brand MD
    FEBS Lett; 1985 Mar; 182(2):380-4. PubMed ID: 3979560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane potentials in cell-free preparations from guinea pig cerebral cortex: effect of depolarizing agents and cyclic nucleotides.
    Creveling CR; McNeal ET; McCulloh DH; Daly JW
    J Neurochem; 1980 Oct; 35(4):922-32. PubMed ID: 6109002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrogenic ATP-dependent Cl- transport by plasma membrane vesicles from Aplysia intestine.
    Gerencser GA
    Am J Physiol; 1988 Jan; 254(1 Pt 2):R127-33. PubMed ID: 3337266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Na+/Ca2+ exchange in the rat pancreatic B cell.
    Plasman PO; Herchuelz A
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):123-7. PubMed ID: 1637290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.