These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 702938)

  • 1. Effects of synaptic plasma membranes on release of acetylcholine from synaptic vesicles.
    Kuo CH; Ichida S; Hata F; Yoshida H
    Jpn J Pharmacol; 1978 Jun; 28(3):339-43. PubMed ID: 702938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbic acid, an endogenous factor required for acetylcholine release from the synaptic vesicles.
    Kuo CH; Yoshida H
    Jpn J Pharmacol; 1980 Aug; 30(4):481-92. PubMed ID: 7206361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca(2+)-independent fusion of synaptic vesicles with phospholipase A2-treated presynaptic membranes in vitro.
    Nishio H; Takeuchi T; Hata F; Yagasaki O
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):981-7. PubMed ID: 8836147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-dependent calcium uptake by cholinergic synaptic vesicles isolated from Torpedo electric organ.
    Israël M; Manaranche R; Marsal J; Meunier FM; Morel N; Frachon P; Lesbats B
    J Membr Biol; 1980 May; 54(2):115-26. PubMed ID: 7401165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors required for Ca-sensitive acetylcholine release from crude synaptic vesicles.
    Hata F; Kuo CH; Matsuda T; Yoshida H
    J Neurochem; 1976 Jul; 27(1):139-44. PubMed ID: 956822
    [No Abstract]   [Full Text] [Related]  

  • 6. AH5183 and cetiedil: two potent inhibitors of acetylcholine uptake into isolated synaptic vesicles from Torpedo marmorata.
    Diebler MF; Gaudry-Talarmain YM
    J Neurochem; 1989 Mar; 52(3):813-21. PubMed ID: 2521893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP but not adenosine inhibits nonquantal acetylcholine release at the mouse neuromuscular junction.
    Galkin AV; Giniatullin RA; Mukhtarov MR; Svandová I; Grishin SN; Vyskocil F
    Eur J Neurosci; 2001 Jun; 13(11):2047-53. PubMed ID: 11422445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of monovalent cations on Na+/Ca2+ exchange and ATP-dependent Ca2+ transport in synaptic plasma membranes.
    Coutinho OP; Carvalho AP; Carvalho CA
    J Neurochem; 1983 Sep; 41(3):670-6. PubMed ID: 6409998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Investigation of mechanisms of synaptic vesicles fusion with acceptor membranes in the model of exocytosis].
    Volynets' HP; Trykash IO
    Ukr Biokhim Zh (1999); 2007; 79(5):98-108. PubMed ID: 18357782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional reconstitution of KCl-evoked, Ca(2+)-dependent acetylcholine release system in Xenopus oocytes microinjected with presynaptic plasma membranes and synaptic vesicles.
    Canals JM; Ruiz-Avila L; Cantí C; Solsona C; Marsal J
    J Neurosci Res; 1996 Apr; 44(2):106-14. PubMed ID: 8723218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylcholine changes underlying transmission of a single nerve impulse in the presence of 4-aminopyridine in Torpedo.
    Corthay J; Dunant Y; Loctin F
    J Physiol; 1982 Apr; 325():461-79. PubMed ID: 6286942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The synthesis and release of acetylcholine in normal and denervated rat diaphragms during incubation in vitro.
    Dolezal V; Tucek S
    J Physiol; 1983 Jan; 334():461-74. PubMed ID: 6864565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of exocytotic mechanisms between acetylcholine- and catecholamine-containing vesicles in rat pheochromocytoma cells.
    Nishiki T; Shoji-Kasai Y; Sekiguchi M; Iwasaki S; Kumakura K; Takahashi M
    Biochem Biophys Res Commun; 1997 Oct; 239(1):57-62. PubMed ID: 9345269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empty synaptic vesicles recycle and undergo exocytosis at vesamicol-treated motor nerve terminals.
    Parsons RL; Calupca MA; Merriam LA; Prior C
    J Neurophysiol; 1999 Jun; 81(6):2696-700. PubMed ID: 10368389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ATP on calcium binding to synaptic plasma membrane.
    Corpus V; Sun AY
    Neurochem Res; 1983 Apr; 8(4):501-20. PubMed ID: 6888650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine release from isolated synaptic vesicles related to ionic permeability changes: continuous detection with a chemiluminescent method.
    Diebler MF
    J Neurochem; 1982 Nov; 39(5):1405-11. PubMed ID: 6288874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological characterization of ATPases in native synaptic vesicles and synaptic plasma membranes.
    Obrdlik P; Diekert K; Watzke N; Keipert C; Pehl U; Brosch C; Boehm N; Bick I; Ruitenberg M; Volknandt W; Kelety B
    Biochem J; 2010 Mar; 427(1):151-9. PubMed ID: 20100168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural distribution of synaptophysin and synaptic vesicle recycling at the frog neuromuscular junction.
    Colasante C; Pécot-Dechavassine M
    J Neurosci Res; 1996 May; 44(3):272-82. PubMed ID: 8723766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ions on the efflux of acetylcholine from peripheral nerve.
    Dettbarn WD; Rosenberg P
    J Gen Physiol; 1966 Nov; 50(2):447-60. PubMed ID: 11526839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-ases of synaptic plasma membranes in striatum: enzymatic systems for synapses functionality by in vivo administration of L-acetylcarnitine in relation to Parkinson's Disease.
    Villa RF; Ferrari F; Gorini A
    Neuroscience; 2013 Sep; 248():414-26. PubMed ID: 23806723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.