These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The ionic strength dependence of the cooperativity factor for DNA melting. Kozyavkin SA; Mirkin SM; Amirikyan BR J Biomol Struct Dyn; 1987 Aug; 5(1):119-26. PubMed ID: 3271461 [TBL] [Abstract][Full Text] [Related]
6. [Nucleoprotein melting. I. Theory of helix-coil transition of DNA in the presence of proteins with cooperative character of interaction under conditions of reversible binding]. Akhrem AA; Lando DIu; Krot VI Mol Biol (Mosk); 1976; 10(6):1332-40. PubMed ID: 1053088 [TBL] [Abstract][Full Text] [Related]
7. [Theory of DNA melting in the interval of B-A transition]. Chogovadze GI; Frank-Kamenetskiĭ MD Biofizika; 1983; 28(5):880-2. PubMed ID: 6639972 [TBL] [Abstract][Full Text] [Related]
8. High resolution thermal denaturation analyses of small sequenced DNA restriction fragments containing Escherichia coli lactose genetic control loci. Hardies SC; Hillen W; Goodman TC; Wells RD J Biol Chem; 1979 Oct; 254(20):10128-34. PubMed ID: 385595 [TBL] [Abstract][Full Text] [Related]
9. Early melting of supercoiled DNA topoisomers observed by TGGE. Víglaský V; Antalík M; Adamcík J; Podhradský D Nucleic Acids Res; 2000 Jun; 28(11):E51. PubMed ID: 10871350 [TBL] [Abstract][Full Text] [Related]
10. Determination of melting temperature and temperature melting range for DNA with multi-peak differential melting curves. Lando DY; Fridman AS; Chang CL; Grigoryan IE; Galyuk EN; Murashko ON; Chen CC; Hu CK Anal Biochem; 2015 Jun; 479():28-36. PubMed ID: 25640587 [TBL] [Abstract][Full Text] [Related]
11. Salt dependence and thermodynamic interpretation of the thermal denaturation of small DNA restriction fragments. Hillen W; Goodman TC; Wells RD Nucleic Acids Res; 1981 Jan; 9(2):415-36. PubMed ID: 6259627 [TBL] [Abstract][Full Text] [Related]
12. The kinetics of DNA helix-coil subtransitions. Kozyavkin SA; Naritsin DB; Lyubchenko YuL J Biomol Struct Dyn; 1986 Feb; 3(4):689-704. PubMed ID: 3271045 [TBL] [Abstract][Full Text] [Related]
13. The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme. Schulz A; Langowski J; Rippe K J Mol Biol; 2000 Jul; 300(4):709-25. PubMed ID: 10891265 [TBL] [Abstract][Full Text] [Related]
14. High-resolution calorimetric and optical melting profiles of DNA plasmids: resolving contributions from intrinsic melting domains and specifically designed inserts. Völker J; Blake RD; Delcourt SG; Breslauer KJ Biopolymers; 1999 Sep; 50(3):303-18. PubMed ID: 10397791 [TBL] [Abstract][Full Text] [Related]
15. [Effect of changes in the stoichiometry of DNA--ligand complexes during heat denaturation of DNA on helix-coil transition parameters]. Lando DIu; Ivanova MA; Akhrem AA Mol Biol (Mosk); 1980; 14(6):1281-8. PubMed ID: 7442671 [TBL] [Abstract][Full Text] [Related]
16. [Effect of additional links weakening or stabilizing the double helix at the melting point of DNA]. Chogovadze GI; Vologodskiĭ AV; Frank-Kamenetskiĭ MD Mol Biol (Mosk); 1980; 14(2):369-74. PubMed ID: 7383032 [TBL] [Abstract][Full Text] [Related]
17. Melting of oligodeoxynucleotides with various structures. Naritsin DB; Lyubchenko YuL J Biomol Struct Dyn; 1991 Feb; 8(4):813-25. PubMed ID: 2059341 [TBL] [Abstract][Full Text] [Related]
18. [Effect of divalent copper ions on heat denaturation of DNA]. Blagoĭ IuP; Sorokin VA; Valeev VA; Gladchenko GO Mol Biol (Mosk); 1978; 12(4):795-805. PubMed ID: 683190 [TBL] [Abstract][Full Text] [Related]
19. Unwinding kinetics of cooperatively melting regions in DNA. Suyama A; Wada A Biopolymers; 1984 Mar; 23(3):409-33. PubMed ID: 6704494 [No Abstract] [Full Text] [Related]
20. [Molecular melting of DNA and the effect of the fine structure of fusion curves]. Lazurkin IuS Mol Biol (Mosk); 1977; 11(6):1311-24. PubMed ID: 377064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]