These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 7029473)

  • 1. Synthesis of unnatural P-N-bond catalyzed with E. coli ribosomes.
    Tarussova NB; Jacovleva GM; Victorova LS; Kukhanova MK; Khomutov RM
    Nucleic Acids Symp Ser; 1981; (9):207-9. PubMed ID: 7029473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of an unnatural P-N bond catalyzed with Escherichia coli ribosomes.
    Tarussova NB; Jacovleva GM; Victorova LS; Kukhanova MK; Khomutov RM
    FEBS Lett; 1981 Jul; 130(1):85-7. PubMed ID: 7026287
    [No Abstract]   [Full Text] [Related]  

  • 3. Maturation of an Escherichia coli ribosomal peptide antibiotic by ATP-consuming N-P bond formation in microcin C7.
    Roush RF; Nolan EM; Löhr F; Walsh CT
    J Am Chem Soc; 2008 Mar; 130(11):3603-9. PubMed ID: 18290647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptidyltransferase activity of 60S ribosomal subunit from wheat germ.
    Sikorski MM; Kukhanova MK; Krayevsky AA; Legocki AB
    Acta Biochim Pol; 1982; 29(1-2):57-63. PubMed ID: 6758451
    [No Abstract]   [Full Text] [Related]  

  • 5. 2'(3')-O-L-(O-methyl-3-phenyllactyl) adenosine. A potential analog of 2'(3')-O-aminoacyl ribonucleosides.
    Zemlicka J; Owens J
    Biochim Biophys Acta; 1976 Aug; 442(1):71-5. PubMed ID: 782539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of the donor substrate binding site of the ribosomal peptidyltransferase center.
    Saarma U; Spahn CM; Nierhaus KH; Remme J
    RNA; 1998 Feb; 4(2):189-94. PubMed ID: 9570318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening, purification, and identification of the enzyme producing N-(L-alpha-L-aspartyl)-L-phenylalanine methyl ester from l-isoasparagine and L-phenylalanine methyl ester.
    Kira I; Asano Y; Yokozeki K
    J Biosci Bioeng; 2009 Sep; 108(3):190-3. PubMed ID: 19664550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shiga toxin attacks bacterial ribosomes as effectively as eucaryotic ribosomes.
    Suh JK; Hovde CJ; Robertus JD
    Biochemistry; 1998 Jun; 37(26):9394-8. PubMed ID: 9649321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal synthesis of unnatural peptides.
    Josephson K; Hartman MC; Szostak JW
    J Am Chem Soc; 2005 Aug; 127(33):11727-35. PubMed ID: 16104750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ribosome as a drug target.
    Böttger EC
    Trends Biotechnol; 2006 Apr; 24(4):145-7. PubMed ID: 16490268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity of 3'-thioAMP derivatives as ribosomal P-site substrates.
    Dorner S; Schmid W; Barta A
    Nucleic Acids Res; 2005; 33(9):3065-71. PubMed ID: 15917438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of non-translating or translating specialized ribosomes causes feedback regulation of ribosomal RNA synthesis in Escherichia coli.
    Leipold RJ; Morgan RW; Dhurjati P
    Biochem Biophys Res Commun; 1995 Jan; 206(1):393-400. PubMed ID: 7818544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosome-catalyzed peptide-bond formation.
    Lieberman KR; Dahlberg AE
    Prog Nucleic Acid Res Mol Biol; 1995; 50():1-23. PubMed ID: 7754030
    [No Abstract]   [Full Text] [Related]  

  • 14. Ribosome modulation factor: stationary growth phase-specific inhibitor of ribosome functions from Escherichia coli.
    Wada A; Igarashi K; Yoshimura S; Aimoto S; Ishihama A
    Biochem Biophys Res Commun; 1995 Sep; 214(2):410-7. PubMed ID: 7677746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-atom homology model of the Escherichia coli 30S ribosomal subunit.
    Tung CS; Joseph S; Sanbonmatsu KY
    Nat Struct Biol; 2002 Oct; 9(10):750-5. PubMed ID: 12244297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved binding of azithromycin to Escherichia coli ribosomes.
    Petropoulos AD; Kouvela EC; Starosta AL; Wilson DN; Dinos GP; Kalpaxis DL
    J Mol Biol; 2009 Jan; 385(4):1179-92. PubMed ID: 19071138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations of the MceIJ-catalyzed posttranslational modification of the microcin E492 C-terminus: linkage of ribosomal and nonribosomal peptides to form "trojan horse" antibiotics.
    Nolan EM; Walsh CT
    Biochemistry; 2008 Sep; 47(35):9289-99. PubMed ID: 18690711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysis of ribosomal translocation by sparsomycin.
    Fredrick K; Noller HF
    Science; 2003 May; 300(5622):1159-62. PubMed ID: 12750524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycling of ribosomal complexes stalled at the step of elongation in Escherichia coli.
    Singh NS; Ahmad R; Sangeetha R; Varshney U
    J Mol Biol; 2008 Jul; 380(3):451-64. PubMed ID: 18565340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study of the poly(U)-dependent interaction of tRNA(Phe) with the P-site of Escherichia coli ribosomes by chemical modification with nitrosoethylurea].
    Nekhaĭ SA; Saminskiĭ EM
    Mol Biol (Mosk); 1994; 28(4):926-31. PubMed ID: 7990821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.