These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 7030122)

  • 1. Fluorescence quenching studies with proteins.
    Eftink MR; Ghiron CA
    Anal Biochem; 1981 Jul; 114(2):199-227. PubMed ID: 7030122
    [No Abstract]   [Full Text] [Related]  

  • 2. Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins.
    Phillips SR; Wilson LJ; Borkman RF
    Curr Eye Res; 1986 Aug; 5(8):611-9. PubMed ID: 3757547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acrylamide and oxygen fluorescence quenching studies with liver alcohol dehydrogenase using steady-state and phase fluorometry.
    Eftink MR; Jameson DM
    Biochemistry; 1982 Aug; 21(18):4443-9. PubMed ID: 6751389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence quenching of liver alcohol dehydrogenase by acrylamide.
    Eftink MR; Selvidge LA
    Biochemistry; 1982 Jan; 21(1):117-25. PubMed ID: 7037051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan fluorescence in electron-transfer flavoprotein:ubiquinone oxidoreductase: fluorescence quenching by a brominated pseudosubstrate.
    Watmough NJ; Loehr JP; Drake SK; Frerman FE
    Biochemistry; 1991 Feb; 30(5):1317-23. PubMed ID: 1991113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The resolution of heterogeneous fluorescence of multitryptophan-containing proteins studied by a fluorescence-quenching method.
    Stryjewski W; Wasylewski Z
    Eur J Biochem; 1986 Aug; 158(3):547-53. PubMed ID: 2942404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations of the molecular basis for the temperature-dependent insolubility of cryoglobulins. VI. Quenching by acrylamide of the intrinsic tryptophan fluorescence of cryoglobulin and non-cryoglobulin IgM proteins.
    Middaugh CR; Litman GW
    Biochim Biophys Acta; 1978 Jul; 535(1):33-43. PubMed ID: 667117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion.
    Lehrer SS
    Biochemistry; 1971 Aug; 10(17):3254-63. PubMed ID: 5119250
    [No Abstract]   [Full Text] [Related]  

  • 9. Fluorescence lifetime and anisotropy studies with liver alcohol dehydrogenase and its complexes.
    Eftink MR; Hagaman KA
    Biochemistry; 1986 Oct; 25(21):6631-7. PubMed ID: 3790548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hydrophobic quencher of protein fluorescence: 2,2,2-trichloroethanol.
    Eftink MR; Zajicek JL; Ghiron CA
    Biochim Biophys Acta; 1977 Apr; 491(2):473-81. PubMed ID: 857905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tryptophan fluorescence quenching in horse liver alcohol dehydrogenase.
    Luisi PL; Favilla R
    Eur J Biochem; 1970 Nov; 17(1):91-4. PubMed ID: 4321008
    [No Abstract]   [Full Text] [Related]  

  • 12. Charge effects on the dynamic quenching of fluorescence of 1,N6-ethenoadenosine oligophosphates by iodide, thallium (I) and acrylamide.
    Ando T; Asai H
    J Biochem; 1980 Jul; 88(1):255-64. PubMed ID: 7410337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of tryptophan residues of cytochrome P450scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide.
    Lange R; Anzenbacher P; Müller S; Maurin L; Balny C
    Eur J Biochem; 1994 Dec; 226(3):963-70. PubMed ID: 7813487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The accessibility of the active site and conformation states of the beta 2 subunit of tryptophan synthase studied by fluorescence quenching.
    Lane AN
    Eur J Biochem; 1983 Jul; 133(3):531-8. PubMed ID: 6345154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of oxidation of tryptophan residues in thioredoxin from Escherichia coli by N-bromosuccinimide.
    Holmgren A
    J Biol Chem; 1973 Jun; 248(11):4106-11. PubMed ID: 4145325
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparative steady-state fluorescence studies of cytosolic rat liver (GTP), Saccharomyces cerevisiae (ATP) and Escherichia coli (ATP) phospho enol pyruvate carboxykinases.
    Encinas MV; Rojas MC; Goldie H; Cardemil E
    Biochim Biophys Acta; 1993 Mar; 1162(1-2):195-202. PubMed ID: 8448184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies.
    Eftink MR; Ghiron CA
    Biochemistry; 1976 Feb; 15(3):672-80. PubMed ID: 1252418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence spectroscopic study of the interaction of saporin with phospholipid vesicles.
    Hao Q; Ding T; Zhang Y; Liu G; Yan L; Gao G; Yan G; Yao Q; Li Q
    Mol Membr Biol; 1997; 14(1):19-23. PubMed ID: 9160337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral heterogeneity in protein fluorescence of bacteriorhodopsin: evidence for intraprotein aqueous regions.
    Plotkin BJ; Sherman WV
    Biochemistry; 1984 Oct; 23(22):5353-60. PubMed ID: 6391541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorescence studies of environmental heterogeneity for tryptophyl residues in proteins.
    Purkey RM; Galley WC
    Biochemistry; 1970 Sep; 9(18):3569-75. PubMed ID: 4324092
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.