These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 7030254)

  • 1. The influence of growth conditions on the synthesis of molybdenum cofactor in Proteins mirabilis.
    Claassen VP; Oltmann LF; Bus S; v 't Riet J; Stouthamer AH
    Arch Microbiol; 1981 Sep; 130(1):44-9. PubMed ID: 7030254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli.
    Miller JB; Amy NK
    J Bacteriol; 1983 Aug; 155(2):793-801. PubMed ID: 6307982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdenum cofactor from the cytoplasmic membrane of Proteus mirabilis.
    Claassen VP; Oltmann LF; Vader CE; van 't Riet J; Stouthamer AH
    Arch Microbiol; 1982 Dec; 133(4):283-8. PubMed ID: 6763509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation in vitro of respiratory nitrate reductase of Escherichia coli K12 grown in the presence of tungstate. Involvement of molybdenum cofactor.
    Saracino L; Violet M; Boxer DH; Giordano G
    Eur J Biochem; 1986 Aug; 158(3):483-90. PubMed ID: 3525161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the molybdenum cofactor in chlorate-resistant mutants of Escherichia coli.
    Amy NK
    J Bacteriol; 1981 Oct; 148(1):274-82. PubMed ID: 7026535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase.
    Hawkes TR; Bray RC
    Biochem J; 1984 Apr; 219(2):481-93. PubMed ID: 6234882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molybdenum cofactor biosynthesis in Neurospora crassa: biochemical characterization of pleiotropic molybdoenzyme mutants nit-7, nit-8, nit-9A, B and C.
    Heck IS; Ninnemann H
    Photochem Photobiol; 1995 Jan; 61(1):54-60. PubMed ID: 7899494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of two tungstate-sensitive molybdenum cofactor mutants, chl2 and chl7, of Arabidopsis thaliana.
    LaBrie ST; Wilkinson JQ; Tsay YF; Feldmann KA; Crawford NM
    Mol Gen Genet; 1992 May; 233(1-2):169-76. PubMed ID: 1534867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ModE-dependent molybdate regulation of the molybdenum cofactor operon moa in Escherichia coli.
    Anderson LA; McNairn E; Lubke T; Pau RN; Boxer DH
    J Bacteriol; 2000 Dec; 182(24):7035-43. PubMed ID: 11092866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of molybdenum cofactor from Escherichia coli.
    Amy NK; Rajagopalan KV
    J Bacteriol; 1979 Oct; 140(1):114-24. PubMed ID: 387715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship of Mo, molybdopterin, and the cyanolyzable sulfur in the Mo cofactor.
    Wahl RC; Hageman RV; Rajagopalan KV
    Arch Biochem Biophys; 1984 Apr; 230(1):264-73. PubMed ID: 6231887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molybdenum cofactor requirement for in vitro activation of apo-molybdoenzymes of Escherichia coli.
    Giordano G; Boxer DH; Pommier J
    Mol Microbiol; 1990 Apr; 4(4):645-50. PubMed ID: 2141097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molybdenum cofactor: a compound in the in vitro activation of both nitrate reductase and trimethylamine-N-oxide reductase activities in Escherichia coli K12.
    Silvestro A; Pommier J; Giordano G
    Biochim Biophys Acta; 1986 Aug; 872(3):243-52. PubMed ID: 3524687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Chlamydomonas reinhardtii MoCo carrier protein is multimeric and stabilizes molybdopterin cofactor in a molybdate charged form.
    Witte CP; Igeño MI; Mendel R; Schwarz G; Fernández E
    FEBS Lett; 1998 Jul; 431(2):205-9. PubMed ID: 9708903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of chlA, E, M, and N loci in Escherichia coli molybdopterin biosynthesis.
    Johnson ME; Rajagopalan KV
    J Bacteriol; 1987 Jan; 169(1):117-25. PubMed ID: 2947896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of a protein with molybdenum cofactor in the in vitro activation of nitrate reductase from a chlA mutant of Escherichia coli K12.
    Giordano G; Santini CL; Saracino L; Iobbi C
    Biochim Biophys Acta; 1987 Aug; 914(3):220-32. PubMed ID: 2956990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton translocation coupled to trimethylamine N-oxide reduction in anaerobically grown Escherichia coli.
    Takagi M; Tsuchiya T; Ishimoto M
    J Bacteriol; 1981 Dec; 148(3):762-8. PubMed ID: 7031034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdenum-sensitive transcriptional regulation of the chlD locus of Escherichia coli.
    Miller JB; Scott DJ; Amy NK
    J Bacteriol; 1987 May; 169(5):1853-60. PubMed ID: 3106322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of tungstate on the formation and activities of four reductases in Proteus mirabilis: identification of two new molybdo-enzymes: chlorate reductase and tetrathionate reductase.
    Oltmann LF; Claassen VP; Kastelein P; Reijnders WN; Stouthamer AH
    FEBS Lett; 1979 Oct; 106(1):43-6. PubMed ID: 387443
    [No Abstract]   [Full Text] [Related]  

  • 20. Molybdenum cofactor (chlorate-resistant) mutants of Klebsiella pneumoniae M5al can use hypoxanthine as the sole nitrogen source.
    Garzón A; Li J; Flores A; Casadesus J; Stewart V
    J Bacteriol; 1992 Oct; 174(19):6298-302. PubMed ID: 1400180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.